Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630682

RESUMEN

The aim of this study was to establish a link between genetic diversity and the geographic origin of Pectobacterium strains belonging to three species-P. carotovorum, P. versatile, and P. odoriferum-isolated from cabbage in Serbia by comparing their sequences with those of strains sourced from different hosts and countries in Europe, Asia, and North America. Phylogeographic relatedness was reconstructed using the Templeton, Crandall, and Sing's (TCS) haplotype network based on concatenated sequences of the housekeeping genes dnaX, icdA, mdh, and proA, while pairwise genetic distances were computed by applying the p-distance model. The obtained TCS haplotype networks indicated the existence of high intra-species genetic diversity among strains of all three species, as reflected in the 0.2-2.3%, 0.2-2.5%, and 0.1-1.7% genetic distance ranges obtained for P. carotovorum, P. versatile, and P. odoriferum, respectively. Five new haplotypes (denoted as HPc1-HPc5) were detected among cabbage strains of P. carotovorum, while one new haplotype was identified for both P. versatile (HPv1) and P. odoriferum (HPo1). None of the TCS haplotype networks provided evidence of significant correlation between geographic origin and the determined haplotypes, i.e., the infection origin. However, as haplotype network results are affected by the availability of sequencing data in public databases for the used genes and the number of analyzed strains, these findings may also be influenced by small sample size.

2.
Microorganisms ; 11(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36838301

RESUMEN

The aim of this work was to identify and characterize the pectolytic bacteria responsible for the emergence of bacterial soft rot on two summer cabbage hybrids (Cheers F1 and Hippo F1) grown in the Futog locality (Backa, Vojvodina), known for the five-century-long tradition of cabbage cultivation in Serbia. Symptoms manifesting as soft lesions on outer head leaves were observed during August 2021, while the inner tissues were macerated, featuring cream to black discoloration. As the affected tissue decomposed, it exuded a specific odor. Disease incidence ranged from 15% to 25%. A total of 67 isolates producing pits on crystal violet pectate (CVP) medium were characterized for their phenotypic and genotypic features. The pathogenicity was confirmed on cabbage heads. Findings yielded by the repetitive element palindromic-polymerase chain reaction (rep-PCR) technique confirmed interspecies diversity between cabbage isolates, as well as intraspecies genetic diversity within the P. carotovorum group of isolates. Based on multilocus sequence typing (MLST) using genes dnaX, mdh, icdA, and proA, five representative isolates were identified as Pectobacterium carotovorum (Cheers F1 and Hippo F1), while two were identified as Pectobacterium versatile (Hippo F1) and Pectobacterium odoriferum (Hippo F1), respectively, indicating the presence of diverse Pectobacterium species even in combined infection in the same field. Among the obtained isolates, P. carotovorum was the most prevalent species (62.69%), while P. versatile and P. odoriferum were less represented (contributing by 19.40% and 17.91%, respectively). Multilocus sequence analysis (MLSA) performed with concatenated sequences of four housekeeping genes (proA, dnaX, icdA, and mdh) and constructed a neighbor-joining phylogenetic tree enabled insight into the phylogenetic position of the Serbian cabbage Pectobacterium isolates. Bacterium P. odoriferum was found to be the most virulent species for cabbage, followed by P. versatile, while all three species had comparable virulence with respect to potato. The results obtained in this work provide a better understanding of the spreading routes and abundance of different Pectobacterium spp. in Serbia.

3.
Plant Dis ; 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34410856

RESUMEN

Potato blackleg is frequently observed on the production fields in the Backa region of Vojvodina province, which is one of the largest potato-growing areas in Serbia. This disease usually occurs during June and July. In July 2020, blackleg symptoms in the form of stem necrotic lesions, vascular discoloration, hollow stems, and wilting of whole plants were noted on potato cultivar VR808 on a field 28 ha in size located in Maglic village (GPS coordinates 45.349325 N, 19.542768 E). Disease incidence was estimated at 20-25%. Isolations were performed from 12 potato samples on Crystal Violet Pectate medium (CVP). Stem sections consisted of brown lesions and healthy tissue (c.10 cm) were surface sterilized with ethyl alcohol 70% (w/v) and rinsed with sterile distilled water. Small pieces of tissue were taken at the edges of stem lesions (between healthy and diseased tissue) were soaked in phosphate buffer saline for 20 min and plated using a standard procedure (Klement et al. 1990). Single colonies that formed pits after 48 hours at 26 °C were re-streaked onto Nutrient Agar (NA) where creamy white colonies with smooth surfaces were formed. A total of 30 isolates were selected and DNA isolated from the colonies was further analyzed by polymerase chain reaction (PCR) using the partial dnaX gene (DNA polymerase subunit III gamma/tau) with primer pair dnaXf/dnaXr for Pectobacterium and Dickeya species identification (Slawiak et al. 2009). A single characteristic band of 535 bp was amplified in all isolates (Slawiak et al. 2009). DNA sequence alignment showed two distinct groups of isolates (Fig.S1), which were genetically uniform within each group. Using BLASTn search, it was established that the dnaX sequence of the first group (consisting of 19 Serbian potato isolates) had 99.79% identity with NCBI-deposited Pectobacterium versatile strains 14A and 3-2 from potato from Belarus (Acc. No. CP034276 and CP024842, respectively) as well as SCC1 from Finland (Acc. No. CP021894). The remaining 11 dnaX sequences had 100% identity with Pectobacterium carotovorum subsp. carotovorum strain CFBP7081 originating from water in Spain (Acc. No. MK516961). The partial dnaX sequences of three Serbian P. versatile isolates (Pv1320, Pv1520, and Pv1620) and one P. carotovorum subsp. carotovorum (Pcc2520) were deposited in GenBank under Acc. No. MW839571, MW805306, MW839572, and MW805307, respectively. These results, indicating combined infection in the observed field, signify the first identification of P. versatile in Serbia. Multilocus sequence analysis (MLSA) performed with proA (proAF1/ proAR1) and mdh (mdh2/mdh4) genes (Ma et al. 2007; Moleleki et al. 2013) grouped three tested Serbian potato P. versatile isolates together with P. versatile strains from NCBI (Fig.S2). For both tested genes, BLASTn search revealed 100% homology with P. versatile strain SCC1 from Finland. Three Serbian P. versatile potato isolates were deposited under Acc. Nos. MZ682623-25 for proA and MZ682620-22 for mdh genes. According to the routine tests suggested for Pectobacteriaceae (Schaad et al. 2001), Serbian isolates possessed microbiological traits identical to P. versatile description (Portier et al. 2019). Pathogenicity was performed on potato cultivar VR808 with three selected P. versatile isolates (Pv1320, Pv1520, and Pv1620) in the following assays: (i) surface-sterilized tuber slices with holes in the center filled with 100 µL of bacterial suspensions (adjusted to 109 CFU mL-1) to test the isolates' ability to cause soft rot, and (ii) young, four-week old plants with developed 3rd true leaf (c. 30 cm tall) were inoculated by injecting stems with bacterial suspension adjusted to 107 - 108 CFU mL-1 at a height 5 cm above the soil line. Negative controls were treated with sterile distilled water. Inoculated plants were kept under controlled conditions (25 °C temperature and >70% relative humidity). Each assay was replicated twice. Soft rot appeared on tuber slices 24 h after inoculation. On inoculated stems, initial symptoms manifested as greasy elongated spots at inoculation sites two days after inoculation (DAI), and subsequently extended along the vascular tissue and became necrotic. Whole plant's decay was recorded in five DAI, while negative controls remained healthy. To complete Koch's postulates, bacteria were re-isolated from symptomatic potato plants and confirmed by PCR and sequencing of dnaX. This first report of P. versatile in potato indicates that blackleg currently present in Serbia is caused by a diverse bacterial population. This pathogen was first identified in genome comparison as 'Candidatus Pectobacterium maceratum' (Shirshikov et al. 2018) and was later renamed as Pectobacterium versatile sp. nov. (Portier et al. 2019). Thus far, bacterium Pectobacterium carotovorum subsp. brasiliensis has been recognized as dominant pathogen on most of the infected fields in Vojvodina province, and was recently noted on one plot subjected to a combined infection with Dickeya dianthicola (Markovic et al. 2021). Findings achieved in this study are highly relevant, as they point to the diversity in potato blackleg pathogens, likely due to the increasingly widespread distribution of imported seed potatoes.

4.
Plants (Basel) ; 10(2)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578716

RESUMEN

The present study examined the effects of Candidatus Phytoplasma solani infection on antioxidative metabolism in leaves and roots of carrot (Daucus carota L.). Disease symptoms appeared at the end of June in the form of the chlorosis on some of the leaves, which became intensely red one week later, while the previously healthy leaves from the same branch becme chlorotic. A few days later, all leaves from the infected leaf branch were intensely red. Infected plants also had slower growth compared to the healthy ones with fewer leaf branches developed. The roots of infected plants were less developed, seared, or gummy with or without brown-colored root hair. The presence of the pathogen was detected by sequencing the 16S rRNA. National Center for Biotechnology Information (NCBI) BLAST analyses of the obtained sequence revealed 100% identity of tested strain with deposited Ca. Phytoplasma solani strains from various countries and hosts, all belonging to the "stolbur" group (16SrXII-A). Identity of 99.74% was found when the tested Serbian strain (MF503627) was compared with the reference stolbur strain STOL11 (AF248959). The oxidative damage of membranes in carrot cells was accompanied by a decrease in the content of photosynthetic pigments. Furthermore, for the determination of specific scavenging properties of the extracts, in vitro antioxidant assay was performed. In phytoplasma-infected carrot leaves, there was a greater reduction in the level of glutathione content (GSH); however; flavonoids and anthocyanidins seem to be responsible for the accompanied increased antioxidative capacity against hydroxyl radical and hydrogen peroxide.

5.
Plant Dis ; 105(4): 1080-1090, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32840436

RESUMEN

Blackleg outbreaks were noticed on three fields (about 100 ha total) in 2 consecutive years (2018, 2019) in one of the main potato growing areas in Serbia (Backa region, Vojvodina). The percentage of infected plants reached 40 to 70%, with 10.5 to 44.7% yield reductions. From the three fields, out of 90 samples Pectobacterium carotovorum subsp. brasiliensis was most frequently identified and diagnosed as causal agent of potato blackleg in Serbia for the first time (29 isolates). Dickeya dianthicola was a less frequently causative bacterium, which was also noticed for the first time (nine isolates). A total of 38 isolates were characterized based on their phenotypic and genetic features, including a pathogenicity test on potato. The repetitive element PCR (rep-PCR) using BOX, REP, and ERIC primer pairs differentiated five genetic profiles among 38 tested isolates. Multilocus sequence analysis (MLSA) of four housekeeping genes, acnA, gapA, icdA, and mdh, revealed the presence of three so far unknown P. c. subsp. brasiliensis multilocus genotypes and confirmed clustering into two main genetic clades as determined in other studies. MLSA also revealed the presence of a new genotype of D. dianthicola in Serbia.


Asunto(s)
Solanum tuberosum , Dickeya , Pectobacterium , Enfermedades de las Plantas , Serbia
6.
Plant Dis ; 103(12): 3072-3082, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31596690

RESUMEN

Bacterial leaf spot caused by the plant pathogenic bacterium Pseudomonas syringae pv. coriandricola (Psc) was observed on carrot, parsnip, and parsley grown on a vegetable farm in the Vojvodina Province of Serbia. Nonfluorescent bacterial colonies were isolated from diseased leaves and characterized using different molecular techniques. Repetitive element PCR fingerprinting with five oligonucleotide primers (BOX, ERIC, GTG5, REP, and SERE) and the randomly amplified polymorphic DNA-PCR with the M13 primer revealed identical fingerprint patterns for all tested strains. Multilocus sequence analysis of four housekeeping genes (gapA, gltA, gyrB, and rpoD) showed a high degree (99.8 to 100%) of homology with sequences of Psc strains deposited in the Plant-Associated Microbes Database and NCBI database. The tested strains caused bacterial leaf spot symptoms on all three host plants. Host-strain specificity was not found in cross-pathogenicity tests, but the plant response (peroxidase induction and chlorophyll bleaching) was more pronounced in carrot and parsley than in parsnip.


Asunto(s)
Daucus carota , Interacciones Huésped-Patógeno , Pastinaca , Petroselinum , Pseudomonas syringae , ADN Bacteriano/genética , Daucus carota/microbiología , Pastinaca/microbiología , Petroselinum/microbiología , Pseudomonas syringae/genética , Serbia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA