Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 12(6): e0151821, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34809464

RESUMEN

Bacteria orchestrate collective behaviors using the cell-cell communication process called quorum sensing (QS). QS relies on the synthesis, release, and group-wide detection of small molecules called autoinducers. In Vibrio cholerae, a multicellular community aggregation program occurs in liquid, during the stationary phase, and in the high-cell-density QS state. Here, we demonstrate that this aggregation program consists of two subprograms. In one subprogram, which we call void formation, structures form that contain few cells but provide a scaffold within which cells can embed. The other subprogram relies on flagellar machinery and enables cells to enter voids. A genetic screen for factors contributing to void formation, coupled with companion molecular analyses, showed that four extracellular proteases, Vca0812, Vca0813, HapA, and PrtV, control the onset timing of both void formation and aggregation; moreover, proteolytic activity is required. These proteases, or their downstream products, can be shared between void-producing and non-void-forming cells and can elicit aggregation in a normally nonaggregating V. cholerae strain. Employing multiple proteases to control void formation and aggregation timing could provide a redundant and irreversible path to commitment to this community lifestyle. IMPORTANCE Bacteria can work as collectives to form multicellular communities. Vibrio cholerae, the bacterium that causes the disease cholera in humans, forms aggregated communities in liquid. Aggregate formation relies on a chemical communication process called quorum sensing. Here, we show that, beyond overarching control by quorum sensing, there are two aggregation subprograms. One subprogram, which we call void formation, creates a scaffold within which cells can embed. The second subprogram, which allows bacteria to enter the scaffold, requires motility. We discovered that four extracellular proteases control the timing of both void formation and aggregation. We argue that, by using redundant proteases, V. cholerae ensures the reliable execution of this community formation process. These findings may provide insight into how V. cholerae persists in the marine environment or colonizes the human host, as both lifestyles are central to the spread of the disease cholera.


Asunto(s)
Cólera/microbiología , Metaloendopeptidasas/metabolismo , Péptido Hidrolasas/metabolismo , Vibrio cholerae/enzimología , Vibrio cholerae/crecimiento & desarrollo , Biopelículas , Humanos , Metaloendopeptidasas/genética , Operón , Péptido Hidrolasas/genética , Percepción de Quorum , Vibrio cholerae/genética
2.
PLoS Biol ; 17(12): e3000579, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830037

RESUMEN

Bacteria convert changes in sensory inputs into alterations in gene expression, behavior, and lifestyles. A common lifestyle choice that bacteria make is whether to exhibit individual behavior and exist in the free-living planktonic state or to engage in collective behavior and form sessile communities called biofilms. Transitions between individual and collective behaviors are controlled by the chemical cell-to-cell communication process called quorum sensing. Here, we show that quorum sensing represses Pseudomonas aeruginosa biofilm formation and virulence by activating expression of genes encoding the KinB-AlgB two-component system (TCS). Phospho-AlgB represses biofilm and virulence genes, while KinB dephosphorylates and thereby inactivates AlgB. We discover that the photoreceptor BphP is the kinase that, in response to light, phosphorylates and activates AlgB. Indeed, exposing P. aeruginosa to light represses biofilm formation and virulence gene expression. To our knowledge, P. aeruginosa was not previously known to detect and respond to light. The KinB-AlgB-BphP module is present in all pseudomonads, and we demonstrate that AlgB is the partner response regulator for BphP in diverse bacterial phyla. We propose that in the KinB-AlgB-BphP system, AlgB functions as the node at which varied sensory information is integrated. This network architecture provides a mechanism enabling bacteria to integrate at least two different sensory inputs, quorum sensing (via RhlR-driven activation of algB) and light (via BphP-AlgB), into the control of collective behaviors. This study sets the stage for light-mediated control of P. aeruginosa infectivity.


Asunto(s)
Fotorreceptores Microbianos/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum/fisiología , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Fosforilación , Fosfotransferasas/metabolismo , Pseudomonas aeruginosa/genética , Factores de Transcripción/metabolismo , Virulencia/fisiología
3.
Elife ; 72018 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-30582742

RESUMEN

Bacteria communicate and collectively regulate gene expression using a process called quorum sensing (QS). QS relies on group-wide responses to signal molecules called autoinducers. Here, we show that QS activates a new program of multicellularity in Vibrio cholerae. This program, which we term aggregation, is distinct from the canonical surface-biofilm formation program, which QS represses. Aggregation is induced by autoinducers, occurs rapidly in cell suspensions, and does not require cell division, features strikingly dissimilar from those characteristic of V. cholerae biofilm formation. Extracellular DNA limits aggregate size, but is not sufficient to drive aggregation. A mutagenesis screen identifies genes required for aggregate formation, revealing proteins involved in V. cholerae intestinal colonization, stress response, and a protein that distinguishes the current V. cholerae pandemic strain from earlier pandemic strains. We suggest that QS-controlled aggregate formation is important for V. cholerae to successfully transit between the marine niche and the human host.


Asunto(s)
Adhesión Bacteriana , Percepción de Quorum , Vibrio cholerae/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pruebas Genéticas , Microscopía , Mutagénesis , Vibrio cholerae/genética
4.
PLoS Biol ; 14(7): e1002517, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27458727

RESUMEN

The gut microbiota is a complex consortium of microorganisms with the ability to influence important aspects of host health and development. Harnessing this "microbial organ" for biomedical applications requires clarifying the degree to which host and bacterial factors act alone or in combination to govern the stability of specific lineages. To address this issue, we combined bacteriological manipulation and light sheet fluorescence microscopy to monitor the dynamics of a defined two-species microbiota within a vertebrate gut. We observed that the interplay between each population and the gut environment produces distinct spatiotemporal patterns. As a consequence, one species dominates while the other experiences sudden drops in abundance that are well fit by a stochastic mathematical model. Modeling revealed that direct bacterial competition could only partially explain the observed phenomena, suggesting that a host factor is also important in shaping the community. We hypothesized the host determinant to be gut motility, and tested this mechanism by measuring colonization in hosts with enteric nervous system dysfunction due to a mutation in the ret locus, which in humans is associated with the intestinal motility disorder known as Hirschsprung disease. In mutant hosts we found reduced gut motility and, confirming our hypothesis, robust coexistence of both bacterial species. This study provides evidence that host-mediated spatial structuring and stochastic perturbation of communities can drive bacterial population dynamics within the gut, and it reveals a new facet of the intestinal host-microbe interface by demonstrating the capacity of the enteric nervous system to influence the microbiota. Ultimately, these findings suggest that therapeutic strategies targeting the intestinal ecosystem should consider the dynamic physical nature of the gut environment.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Motilidad Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Microbiota/fisiología , Aeromonas veronii/fisiología , Animales , Antibiosis/fisiología , Larva/genética , Larva/microbiología , Larva/fisiología , Microscopía Fluorescente , Mutación , Dinámica Poblacional , Especificidad de la Especie , Vibrio cholerae/fisiología , Pez Cebra
5.
mBio ; 6(6): e01163-15, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26507229

RESUMEN

UNLABELLED: The zebrafish, Danio rerio, is a powerful model for studying bacterial colonization of the vertebrate intestine, but the genes required by commensal bacteria to colonize the zebrafish gut have not yet been interrogated on a genome-wide level. Here we apply a high-throughput transposon mutagenesis screen to Aeromonas veronii Hm21 and Vibrio sp. strain ZWU0020 during their colonization of the zebrafish intestine alone and in competition with each other, as well as in different colonization orders. We use these transposon-tagged libraries to track bacterial population sizes in different colonization regimes and to identify gene functions required during these processes. We show that intraspecific, but not interspecific, competition with a previously established bacterial population greatly reduces the ability of these two bacterial species to colonize. Further, using a simple binomial sampling model, we show that under conditions of interspecific competition, genes required for colonization cannot be identified because of the population bottleneck experienced by the second colonizer. When bacteria colonize the intestine alone or at the same time as the other species, we find shared suites of functional requirements for colonization by the two species, including a prominent role for chemotaxis and motility, regardless of the presence of another species. IMPORTANCE: Zebrafish larvae, which are amenable to large-scale gnotobiotic studies, comprehensive sampling of their intestinal microbiota, and live imaging, are an excellent model for investigations of vertebrate intestinal colonization dynamics. We sought to develop a mutagenesis and tagging system in order to understand bacterial population dynamics and functional requirements during colonization of the larval zebrafish intestine. We explored changes in bacterial colonization dynamics and functional requirements when bacteria colonize a bacterium-free intestine, one previously colonized by their own species, or one colonized previously or simultaneously with a different species. This work provides a framework for rapid identification of colonization factors important under different colonization conditions. Furthermore, we demonstrate that when colonizing bacterial populations are very small, this approach is not accurate because random sampling of the input pool is sufficient to explain the distribution of inserts recovered from bacteria that colonized the intestines.


Asunto(s)
Aeromonas/crecimiento & desarrollo , Intestinos/microbiología , Consorcios Microbianos/fisiología , Modelos Estadísticos , Vibrio/crecimiento & desarrollo , Pez Cebra/microbiología , Aeromonas/genética , Animales , Elementos Transponibles de ADN , Vida Libre de Gérmenes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Larva/anatomía & histología , Larva/microbiología , Consorcios Microbianos/genética , Interacciones Microbianas/genética , Modelos Animales , Mutagénesis , Vibrio/genética , Pez Cebra/anatomía & histología
6.
mBio ; 5(6)2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25516613

RESUMEN

UNLABELLED: The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. IMPORTANCE: Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy, to visualize for the first time the colonization of a live, vertebrate gut by specific bacteria with sufficient resolution to quantify the population over a range from a few individuals to tens of thousands of bacterial cells. Our results provide unprecedented measures of bacterial growth kinetics and also show the influence of spatial structure on bacterial populations, which can be revealed only by direct imaging.


Asunto(s)
Aeromonas/crecimiento & desarrollo , Carga Bacteriana , Tracto Gastrointestinal/microbiología , Pez Cebra/microbiología , Animales , Imagenología Tridimensional , Microscopía Fluorescente , Análisis Espacio-Temporal , Coloración y Etiquetado
7.
J Biophotonics ; 6(11-12): 920-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23242824

RESUMEN

The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space.


Asunto(s)
Huesos Faciales/crecimiento & desarrollo , Huesos Faciales/efectos de la radiación , Cráneo/crecimiento & desarrollo , Cráneo/efectos de la radiación , Pez Cebra/crecimiento & desarrollo , Animales , Microscopía Confocal , Microscopía Fluorescente
8.
Biol Bull ; 223(1): 7-20, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22983029

RESUMEN

Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high-resolution imaging of bacterial colonization of the intestine of Danio rerio, the zebrafish. The method allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional data sets generated by these imaging approaches require new strategies for image analysis. When integrated with other "omics" data sets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Luz , Microscopía/métodos , Simbiosis , Pez Cebra/microbiología , Animales , Tracto Gastrointestinal/microbiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...