Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 26660, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225297

RESUMEN

To progress from laboratory research to commercial applications, it is necessary to develop an effective method to prepare large quantities and high-quality of the large-size atomically thin molybdenum dichalcogenides (MoS2). Aqueous-phase processes provide a viable method for producing thin MoS2 sheets using organolithium-assisted exfoliation; unfortunately, this method is hindered by changing pristine semiconducting 2H phase to distorted metallic 1T phase. Recovery of the intrinsic 2H phase typically involves heating of the 1T MoS2 sheets on solid substrates at high temperature. This has restricted and hindered the utilization of 2H phase MoS2 sheets suspensions. Here, we demonstrate that the synergistic effect of the rigid planar structure and charged nature of organic salt such as imidazole (ImH) can be successfully used to produce atomically thin 2H-MoS2 sheets suspension in water. Moreover, lateral size and area of the exfoliated sheet can be up to 50 µm and 1000 µm(2), respectively. According to the XPS measurements, nearly 100% of the 2H-MoS2 sheets was successfully prepared. A composite paper supercapacitor using the exfoliated 2H-MoS2 and carbon nanotubes delivered a superior volumetric capacitance of ~410 F/cm(3). Therefore, the organic salts-assisted liquid-phase exfoliation has great potential for large-scale production of 2H-MoS2 suspensions for supercapacitor application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...