Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 167: 530-540, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27764746

RESUMEN

This study firstly investigated the species, concentration variation, and emission factors of mercury emitted from the burning of incenses and joss papers in an Asian temple. Both indoor and outdoor speciated mercury (GEM, GOM, and PHg) were sampled by manual samplers, while ambient GEM at an indoor site was in-situ monitored by a continuous GEM monitor. Field measurement results showed that the total atmospheric mercury (TAM) concentrations in indoor and outdoor environments were in the range of 8.03-35.72 and 6.03-31.35 ng/m3, respectively. The indoor and outdoor ratios (I/O) of TAM in the daytime and at nighttime were in the range of 0.64-0.90 and 1.50-2.04, respectively. The concentrations of GEM, GOM, and PHg during the holiday periods were approximately 1-4 times higher than those during the non-holiday periods. GEM was the dominant mercury species in the indoor and outdoor environments and accounted for 63-81% of TAM, while the oxidized mercury accounted for 19-37% of TAM. Burning incenses and joss papers in a combustion chamber showed that the concentration of GEM from joss paper burning ranged from 4.07 to 11.62 µg/m3, or about 13.97 times higher than that of incense burning, while the concentration of PHg from incense burning ranged from 95.91 to 135.07 ng/m3, or about 3.29 times higher than that of joss paper burning. The emission factors of incense burning were 10.39 ng/g of GEM and 1.40 ng/g of PHg, while those of joss paper burning were 12.65 ng/g of GEM and 1.27 ng/g of PHg, respectively. This study revealed that speciated mercury emitted from worship activities had significant influence on the indoor and outdoor mercury concentrations in an Asian temple. Higher intensity of worship activities during holidays resulted in a higher concentration of speciated mercury in indoor and outdoor air, which might cause health threats to worshipers, staffs, and surrounding inhabitants through long-term exposure.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Mercurio/análisis , Papel , Religión , Asia
2.
J Hazard Mater ; 289: 235-243, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-25733397

RESUMEN

The photo-oxidation of Hg(0) in a lab-scale reactor by titanium dioxide (TiO2) coated on the surface of glass beads was investigated at high temperatures. TiO2 was calcinated at four different temperatures of 300 °C, 400 °C, 500 °C and 600 °C (noted as Ti300, Ti400, Ti500 and Ti600) and characterized for its physicochemical properties. The calcinated TiO2 coating on the glass beads was then tested to compare the photo-oxidation efficiencies of Hg(0) with an incident light of 365 nm. The results showed that the oxidation efficiencies of Hg(0) for Ti400 and Ti500 were higher than those of Ti300 and Ti600. To enhance the photo-oxidation efficiency of Hg(0), Ti400 was selected to examine the wave lengths (λ) of 254 nm, 365 nm and visible light with various influent Hg(0) concentrations. The effects of irradiation strength and the presence of oxygen on the photo-oxidation efficiency of Hg(0) were further investigated, respectively. This study revealed that the wave length (λ) of 254 nm could promote the photo-oxidation efficiency of Hg(0) at 140 and 160 °C, while increasing the influent Hg(0) concentration and could enhance the photo-oxidation rate of Hg(0). However, the influence of 5% O2 present in the flue gas for the enhancement of Hg(0) oxidation was limited. Moreover, the intensity of the incident wave length of 365 nm and visible light were demonstrated to boost the photo-oxidation efficiency of Hg(0) effectively.


Asunto(s)
Mercurio/química , Titanio/química , Catálisis , Ambiente , Gases/química , Calor , Oxidación-Reducción , Fotoquímica , Centrales Eléctricas , Propiedades de Superficie , Rayos Ultravioleta , Difracción de Rayos X
3.
Environ Sci Pollut Res Int ; 21(8): 5474-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24407780

RESUMEN

This study investigated the tempospatial variation of atmospheric mercury and its gas-particulate partition in the vicinity of a semiconductor manufacturing complex, where a plenty of flat-monitor manufacturing plants using elemental mercury as a light-initiating medium to produce backlight fluorescence tubes and may fugitively emit mercury-containing air pollutants to the atmosphere. Atmospheric mercury speciation, concentration, and the partition of total gaseous mercury (TGM) and particulate mercury (Hgp) were measured at four sites surrounding the semiconductor manufacturing intensive district/complex. One-year field measurement showed that the seasonal averaged concentrations of TGM and Hgp were in the range of 3.30-6.89 and 0.06-0.14 ng/m(3), respectively, whereas the highest 24-h TGM and Hgp concentrations were 10.33 and 0.26 ng/m(3), respectively. Atmospheric mercury apportioned as 92.59-99.01 % TGM and 0.99-7.41 % Hgp. As a whole, the highest and lowest concentrations of TGM were observed in the winter and summer sampling periods, respectively, whereas the concentration of Hgp did not vary much seasonally. The highest TGM concentrations were always observed at the downwind sites, indicating that the semiconductor manufacturing complex was a hot spot of mercury emission source, which caused severe atmospheric mercury contamination over the investigation region.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Mercurio/análisis , Semiconductores , Material Particulado/análisis , Estaciones del Año
4.
J Air Waste Manag Assoc ; 62(7): 799-809, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22866581

RESUMEN

A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.


Asunto(s)
Carbono/química , Cloruro de Mercurio/química , Azufre/química , Adsorción , Automóviles , Residuos Industriales/análisis , Porosidad , Propiedades de Superficie , Termodinámica , Termogravimetría
5.
J Air Waste Manag Assoc ; 61(11): 1115-23, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22168095

RESUMEN

This study investigated the seasonal variation and spatial distribution of gaseous and particulate mercury at a unique mercury-contaminated remediation site located at the near-coastal region of Tainan City, Taiwan. Gaseous elemental mercury (GEM), particulate mercury (PTM), and dustfall mercury (DFM) were measured at six nearby sites from November 2009 to September 2010. A newly issued Method for Sampling and Analyzing Mercury in Air (National Institute of Environmental Analysis [NIEA] Method A304.10C) translated from U.S. Environmental Protection Agency (EPA) Method 10-5, was applied for the measurement of atmospheric mercury in this particular study. One-year field measurements showed that the seasonal averaged concentrations of GEM and PTM were in the range of 5.56-12.60 and 0.06-0.22 ng/m3, respectively, whereas the seasonal averaged deposition fluxes of DFM were in the range of 27.0-56.8 g/km2-month. The maximum concentrations of GEM and PTM were 38.95 and 0.58 ng/m3, respectively. The atmospheric mercury apportioned as 97.42-99.87% GEM and 0.13-2.58% PTM. As a whole, the concentrations of mercury species were higher in the springtime and summertime than those in the wintertime and fall. The southern winds generally brought higher mercury concentrations, whereas the northern winds brought relatively lower mercury concentrations, to the nearby fishing villages. This study revealed that the mercury-contaminated remediation site, an abandoned chlor-alkali manufacturing plant, was the major mercury emission source that caused severe atmospheric mercury contamination over the investigation region. The hot spot of mercury emissions was allocated at the southern tip of the abandoned chlor-alkali manufacturing plant. On-site continuous monitoring of GEM at the mercury-contaminated remediation site observed that GEM concentrations during the open excavation period were 2-3 times higher than those during the nonexcavation period.


Asunto(s)
Contaminantes Atmosféricos/química , Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental , Gases/química , Mercurio/química , Restauración y Remediación Ambiental/métodos , Estaciones del Año , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...