Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(9): 1177-1180, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36628583

RESUMEN

Light-activated H2S donors have attracted considerable interest in understanding the physiological role and clinical potential of H2S, as their release is highly localized and controlled. Herein, we have evolved a new HPQ chromophore-based fluorescent organic nanosystem localized in a target area that tolerates oxidative stress and precisely releases H2S under one- and two-photon irradiation with real-time monitoring capability. The two-photon absorption cross-section of this new phototrigger was calculated to be 283 GM at 720 nm. H2S photorelease was also demonstrated in vitro on the MDA-MB-468 cell line in the presence of excess ROS. Our developed H2S nanoprodrug can be applied to living systems to release the H2S-gasotransmitter under laser irradiation in a phototherapeutic window.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Células HeLa , Sulfuro de Hidrógeno/metabolismo , Fotones , Estrés Oxidativo
2.
Exp Cell Res ; 417(1): 113195, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561786

RESUMEN

The Transforming growth factor-ß1 (TGF- ß1) in the tumor microenvironment (TME) is the major cytokine that acts as a mediator of tumor-stroma crosstalk, which in fact has a dual role in either promoting or suppressing tumor development. The cancer-associated fibroblasts (CAFs) are the major cell types in the TME, and the interaction with most of the epithelial cancers is the prime reason for cancer survival. However, the molecular mechanisms, associated with the TGF- ß1 induced tumor promotion through tumor-CAF crosstalk are not well understood. In the Reverse Warburg effect, CAFs feed the adjacent cancer cells by lactate produced during the aerobic glycolysis. We hypothesized that the monocarboxylate transporter, MCT4 which is implicated in lactate efflux from the CAFs, must be overexpressed in the CAFs. Contextually, to explore the role of TGF- ß1 in the hypoxia-induced autophagy in CAFs, we treated CoCl2 and external TGF- ß1 to the human dermal fibroblasts and L929 murine fibroblasts. We demonstrated that hypoxia accelerated the TGF- ß1 signaling and subsequent transformation of normal fibroblasts to CAFs. Moreover, we elucidated that synergistic induction of autophagy by hypoxia and TGF- ß1 upregulate the aerobic glycolysis and MCT4 expression in CAFs. Furthermore, we showed a positive correlation between glucose consumption and MCT4 expression in the CAFs. Autophagy was also found to be involved in the EMT in hypoxic CAFs. Collectively, these findings reveal the unappreciated role of autophagy in TME, which enhances the CAF transformation and that promotes tumor migration and metastasis via the reverse Warburg effect.


Asunto(s)
Autofagia , Fibroblastos Asociados al Cáncer , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Neoplasias , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Hipoxia/metabolismo , Ácido Láctico/metabolismo , Ratones , Neoplasias/patología , Microambiente Tumoral , Regulación hacia Arriba
3.
Biochim Biophys Acta Rev Cancer ; 1877(2): 188692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122882

RESUMEN

Sox family of transcriptional factors play essential functions in development and are implicated in multiple clinical disorders, including cancer. Sox2 being their most prominent member and performing a critical role in reprogramming differentiated adult cells to an embryonic phenotype is frequently upregulated in multiple cancers. High Sox2 levels are detected in breast tumor tissues and correlate with a worse prognosis. In addition, Sox2 expression is connected with resistance to conventional anticancer therapy. Together, it can be said that inhibiting Sox2 expression can reduce the malignant features associated with breast cancer, including invasion, migration, proliferation, stemness, and chemoresistance. This review highlights the critical roles played by the Sox gene family members in initiating or suppressing breast tumor development, while primarily focusing on Sox2 and its role in breast tumor initiation, maintenance, and progression, elucidates the probable mechanisms that control its activity, and puts forward potential therapeutic strategies to inhibit its expression.


Asunto(s)
Neoplasias de la Mama , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/patología , Femenino , Humanos , Células Madre Neoplásicas/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética
4.
J Cell Physiol ; 236(11): 7887-7902, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34008184

RESUMEN

Autophagy is primarily a homeostatic and catabolic process that is increasingly being recognized to have a pivotal role in the initiation and maintenance of cancer cells, as well as in the emergence of therapeutic resistance. Moreover, in the tumor microenvironment (TME) autophagy plays a crucial and sometimes dichotomous role in tumor progression. Recent studies show that during the early stages of tumor initiation, autophagy suppresses tumorigenesis. However, in the advanced stage of tumorigenesis, autophagy promotes cancer progression by protecting cancer cells against stressful conditions and therapeutic assault. Specifically, in cancer-associated fibroblasts (CAFs), autophagy promotes tumorigenesis not only by providing nutrients to the cancerous cells but also by inducing epithelial to mesenchymal transition, angiogenesis, stemness, and metastatic dissemination of the cancer cells, whereas in the immune cells, autophagy induces the tumor-localized immune response. In the TME, CAFs play a crucial role in cancer cell metabolism, immunoreaction, and growth. Therefore, targeting autophagy in CAFs by several pharmacological inducers like rapamycin or the inhibitor such as chloroquine has gained importance in preclinical and clinical trials. In the present review, we summarized the basic mechanism of autophagy in CAFs along with its role in driving tumorigenic progression through several emerging as well as classical hallmarks of cancer. We also addressed various autophagy inducers as well as inhibitors of autophagy for more efficient cancer management. Eventually, we prioritized some of the outstanding issues that must be addressed with utmost priority in the future to elucidate the role of autophagy in CAFs on tumor progression and therapeutic intervention.


Asunto(s)
Autofagia , Fibroblastos Asociados al Cáncer/patología , Neoplasias/patología , Animales , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal , Microambiente Tumoral
5.
Biochim Biophys Acta Rev Cancer ; 1875(1): 188488, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271308

RESUMEN

The tumor microenvironment (TME) is a complex network of cellular organization consisting of fibroblasts, adipocytes, pericytes, immune cells endothelial cells, and extracellular matrix proteins. Besides communicating with each other, tumor cells are also involved in the tumor stroma interaction. Presently, most of the studies have focused on the contribution of TME in supporting tumor growth through intercellular communication by physical contact between the cells or through paracrine signaling cascades of growth factors and cytokines. The crosstalk between the tumor and TME has a pivotal role in the development of anti-cancer drug resistance. Drug resistance, be it against targeted or non-targeted drugs, has emerged as a major hurdle in the successful therapeutic intervention of cancer. Among the several mechanisms involved in the development of the resistance to anti-cancer therapies, exosomes have recently come into the limelight. Exosomes are the nano-sized vesicles, originated from the endolysosomal compartments and have the inherent potential to shuttle diverse biomolecules like proteins, lipids, and nucleic acids to the recipient cells. There are also instances where the pharmacological compounds are transferred between the cells via exosomes. For instance, the transfer of the cargoes from the drug-resistant tumor cells immensely affects the recipient drug-sensitive cells in terms of their proliferation, survival, migration, and drug resistance. In this review, we have discussed multiple aspects of the exosome-mediated bidirectional interplay between tumor and TME. Furthermore, we have also emphasized the contribution of exosomes promoting drug resistance and therapeutic strategies to mitigate the exosome induced drug resistance as well.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Exosomas/genética , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/genética , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Comunicación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Exosomas/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/patología , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
6.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188416, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32822826

RESUMEN

One of the undeniable issues with cancer eradication is the evolution of chemoresistance in due course of treatment, and the mechanisms of chemoresistance have been the subject of extensive research for several years. The efficacy of chemotherapy is hindered by cancer epithelium, mostly in a cell-autonomous mechanism. However, recently the valid experimental evidence showed that the surrounding tumor microenvironment (TME) is equivalently responsible for the induction of chemoresistance. Of the verities of cells in the tumor microenvironment, cancer-associated fibroblasts (CAFs) are the major cellular component of TME and act as a key regulator in the acquisition of cancer chemoresistance by providing a protective niche to the cancer cells against the anti-cancer drugs. Moreover, the symbiotic relationship between the tumor and CAFs to obtain key resources such as growth factors and nutrients for optimal tumor growth and proliferation favors the chemoresistance phenotype. Here, in this review, we provide an up-to-date overview of our knowledge of the role of the CAFs in inducing chemoresistance and tumor progression. We also further delineated the emerging events leading to the CAF origins and activation of normal fibroblasts to CAFs. Along with this, we also discuss the novel area of research confined to the CAF targeted therapies of cancer. The identification of CAF-specific markers may allow unveiling new targets and avenues for blunting or reverting the detrimental pro-tumorigenic potential of CAFs in the foreseeable future.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Resistencia a Antineoplásicos , Neoplasias/metabolismo , Biomarcadores/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias/patología , Nutrientes/metabolismo , Microambiente Tumoral
7.
Org Biomol Chem ; 17(39): 8800-8805, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31560347

RESUMEN

Hydrogen persulfide (H2S2) plays an important role in sulfur-based redox signaling mechanisms. Herein, we developed a visible light activated ESIPT based H2S2 donor using a p-hydroxyphenacyl phototrigger. The unique feature of the designed H2S2 donor system is the ability to monitor the H2S2 release in real time through a non-invasive fluorescence color change approach, with the color changing from green to blue. Next, we demonstrated the detection and quantification of H2S2 using a fluorescein based "turn-on" fluorescent probe. Furthermore, in vitro studies of the designed H2S2 donor demonstrated the real-time monitored H2S2 release and cytoprotective ability in the highly oxidizing cellular environment of MDA-MB-468 cells.


Asunto(s)
Colorantes Fluorescentes/química , Hidrógeno/análisis , Imagen Óptica , Sulfuros/análisis , Línea Celular Tumoral , Humanos , Luz , Procesos Fotoquímicos , Factores de Tiempo
8.
Mol Pharm ; 16(1): 24-40, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30513203

RESUMEN

The effective delivery of target-specific siRNA to the brain by exploiting the exosomes derived from dendritic cells renders the paradigm shift for the prospective use of nanosized exosomes as a delivery system. Although the in vivo targeting strategies by other nanovesicles like liposomes exist, still this novel exosome-based delivery approach holds an inclusive dominance of in vivo security and reduced immunogenicity. Achieving promising exosome-based delivery strategies warrants more desirable exploration of their biology. Over the years, the invention of novel production, characterization, targeting strategies, and cargo loading techniques of exosome improved its ability to reach clinics. Essentially, exosome-based delivery of therapeutics assures to conquer the major hurdles, like delivery of cargos across impermeable biological barriers, like the blood-brain barrier, biocompatibility, increased solubility, metabolic stability, improved circulation time, target specific delivery, and pharmacokinetics, and thereby enhanced the efficacy of loaded therapeutic agents. In this article, we cover the current status of exosome as a delivery vehicle for therapeutics and the challenges that need to be overcome, and we also discuss future perspectives of this exciting field of research to transform it from bench to clinical reality.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Exosomas/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Humanos , Modelos Teóricos , ARN Interferente Pequeño/metabolismo
9.
Oncogene ; 37(33): 4546-4561, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29743594

RESUMEN

Although there is a strong correlation between multinucleated cells (MNCs) and cancer chemo-resistance in variety of cancers, our understanding of how multinucleated cells modulate the tumor micro-environment is limited. We captured multinucleated cells from triple-negative chemo-resistant breast cancers cells in a time frame, where they do not proliferate but rather significantly regulate their micro-environment. We show that oxidatively stressed MNCs induce chemo-resistance in vitro and in vivo by secreting VEGF and MIF. These factors act through the RAS/MAPK pathway to induce chemo-resistance by upregulating anti-apoptotic proteins. In MNCs, elevated reactive oxygen species (ROS) stabilizes HIF-1α contributing to increase production of VEGF and MIF. Together the data indicate, that the ROS-HIF-1α signaling axis is very crucial in regulation of chemo-resistance by MNCs. Targeting ROS-HIF-1α in future may help to abrogate drug resistance in breast cancer.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
ACS Omega ; 2(10): 6677-6690, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023528

RESUMEN

In recent decades, drug delivery systems (DDSs) based on polymer nanoparticles have been explored due to their potential to deliver drugs with poor water solubility. Some of the limitations of nanoparticle-based DDSs can be overcome by developing an appropriate polymer prodrug. In this work, poly(NIPA)-b-poly(HMNPPA)-b-poly(PEGMA-stat-BA) was synthesized using reversible addition fragmentation chain transfer polymerization and Chlorambucil (Cbl), an anticancer drug, was conjugated to the copolymer via 3-(3-(hydroxymethyl)-4-nitrophenoxy)propyl acrylate (HMNPPA) units to prepare the prodrug. A few biotin acrylate (BA) units were also incorporated to bring potential targeting capability to the prodrug in the copolymer. This polymer prodrug formed spherical micellar nanoparticles in physiological conditions, which were characterized by dynamic light scattering and transmission electron microscopy measurements. The very low critical aggregation concentration (cac) (0.011 mg/mL) of the prodrug, as measured from Nile Red fluorescence, makes it stable against dilution. The polymer prodrug was shown to release Cbl on photoirradiation by soft UV (λ ≥ 365 nm) and laser (λ = 405 nm) light. The prodrug micellar nanoparticles were capable of encapsulating a second drug (doxorubicin, DOX) in their hydrophobic core. On photoirradiation with UV and laser light of the DOX-loaded nanoparticles, both Cbl and DOX were released. Light-induced breaking of photolabile ester bond resulted in the release of Cbl and caused disruption of the nanoparticles facilitating release of DOX. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay confirmed the nontoxicity of the polymers and effectiveness of the dual drug-loaded micellar nanoparticles toward cancer cells. Confocal microscopy results showed a better cellular internalization capability of the DOX-loaded nanoparticles in cancer cells, possibly due to the presence of cancer cell targeting biotin molecules in the polymer. This new photoresponsive potentially biocompatible and cancer cell-targeted polymer prodrug may be useful for delivery of single and/or multiple hydrophobic drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...