Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(20): 7698-7706, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784756

RESUMEN

Separating carbon dioxide (CO2) from acetylene (C2H2) is one of the most critical and complex industrial separations due to similarities in physicochemical properties and molecular dimensions. Herein, we report a novel Ni-based three-dimensional framework {[Ni4(µ3-OH)2(µ2-OH2)2(1,4-ndc)3](3H2O)}n (1,4-ndc = 1,4-naphthalenedicarboxylate) with a one-dimensional pore channel (3.05 × 3.57 Å2), that perfectly matches with the molecular size of CO2 and C2H2. The dehydrated framework shows structural transformation, decorated with an unsaturated Ni(ii) centre and pendant oxygen atoms. The dynamic nature of the framework is evident by displaying a multistep gate opening type CO2 adsorption at 195, 273, and 298 K, but not for C2H2. The real time breakthrough gas separation experiments reveal a rarely attempted inverse CO2 selectivity over C2H2, attributed to open metal sites with a perfect pore aperture. This is supported by crystallographic analysis, in situ spectroscopic inspection, and selectivity approximations. In situ DRIFTS measurements and DFT-based theoretical calculations confirm CO2 binding sites are coordinatively unsaturated Ni(ii) and carboxylate oxygen atoms, and highlight the influence of multiple adsorption sites.

2.
Langmuir ; 40(11): 5913-5922, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38436582

RESUMEN

The hydrogels, formed by self-assembly of predesigned, discrete metal-organic cubes (MOCs), have emerged as a new type of functional soft material whose diverse properties are yet to be explored. Here, we explore the proton conductivity of a MOC-based supramolecular porous framework {(Me2NH2)12[Ga8(ImDC)12]·DMF·29H2O} (1) (ImDC = 4,5-imidazole dicarboxylate) and derived hydrogel (MOC-G1). The intrinsic charge-assisted H-bonded (between anionic MOC {[Ga8(ImDC)12]12-} and dimethylammonium cations) framework 1 exhibits an ambient condition proton conductivity value of 2.3 × 10-5 S cm-1 (@40% RH) which increases with increasing temperature (8.2 × 10-4 S cm-1 at 120 °C and 40% RH) and follows the Grotthuss type of mechanism of proton conduction. Self-assembly of the MOCs in the presence of ammonium cations, as molecular binders, resulted in a hydrogel (MOC-G1) that shows directional H-bonded 1D nanotubular morphology. While guest water molecules are immensely important in deciding the proton conductivity of both 1 and MOC-G1, the presence of additional proton carriers, such as DMA and ammonium cations, resulted in at least 1 order increment in the proton conductivity of the latter (1.8 × 10-2 S cm-1) than the former (1.4 × 10-3 S cm-1) under 25 °C and 98% RH condition. The values of proton conductivity of 1 and MOC-G1 are comparable with those of the best proton conduction reports in the literature. This work may pave the way for the development of proton conductors with unique architecture and conductivity requisite for the state-of-the-art technologies by selecting appropriate MOC and molecular binders.

3.
Angew Chem Int Ed Engl ; 63(22): e202403697, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38512122

RESUMEN

The energy barrier to dissociate neutral water has been lowered by the differential intermediate binding on the charge-modulated metal centers of Co85Mo15 sheets supported on Ni-foam (NF), where the overpotential for hydrogen evolution reaction (HER) in 1 M phosphate buffer solution (PBS) is only 50±9 mV at -10 mA cm-2. It has a turnover frequency (TOF) of 0.18 s-1, mass activity of 13.2 A g-1 at -200 mV vs. reversible hydrogen electrode (RHE), and produces 16 ml H2 h-1 at -300 mV vs. RHE, more than double that of 20 % Pt/C. The Moδ+ and Coδ- sites adsorb OH*, and H*, respectively, and the electron injection from Co to H-O-H cleaves the O-H bond to form the Mo-OH* intermediate. Operando spectral analyses indicate a weak H-bonded network for facilitating the H2O*/OH* transport, and a potential-induced reversal of the charge density from Co to the more electronegative Mo, because of the electron withdrawing Co-H* and Mo-OH* species. Co85Mo15/NF can also drive the complete electrolysis of neutral water at only 1.73 V (10 mA cm-2). In alkaline, and acidic media, it demonstrates a Pt-like HER activity, accomplishing -1000 mA cm-2 at overpotentials of 161±7, and 175±22 mV, respectively.

4.
Chem Sci ; 14(43): 12321-12330, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37969590

RESUMEN

Porous, supramolecular structures exhibit preferential encapsulation of guest molecules, primarily by means of differences in the order of (noncovalent) interactions. The encapsulation preferences can be for geometry (dimension and shape) and the chemical nature of the guest. While geometry-based sorting is relatively straightforward using advanced porous materials, designing a "chemical nature" specific host is not. To introduce "chemical specificity", the host must retain an accessible and complementary recognition site. In the case of a supramolecular, porous coordination polymer (PCP) [Zn(o-phen)(ndc)] (o-phen: 1,10-phenanthroline, ndc: 2,6-naphthalenedicarboxylate) host, equipped with an adaptable recognition pocket, we have discovered that the preferential encapsulation of a haloaromatic isomer is not only for dimension and shape, but also for the "chemical nature" of the guest. This selectivity, i.e., preference for the dimension, shape and chemical nature, is not guided by any complementary recognition site, which is commonly required for "chemical specificity". Insights from crystal structures and computational studies unveil that the differences in the different types of noncovalent host-guest interaction strengths, acting in a concerted fashion, yield the unique selectivity.

5.
ACS Appl Mater Interfaces ; 15(23): 27893-27904, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37265435

RESUMEN

The efficient electrochemical conversion and storage devices can be boosted by the development of cost-effective and durable electrocatalysts. However, simultaneous in-depth understanding of the reaction mechanism is also required. Herein, we report the preparation, characterization, and electrochemical activities of bimetallic NixCo1-x NPs and core-shell NixCo1-x@NixCo1-xO NPs stabilized on N-doped carbon nanotubes (NCNTs). The electrocatalyst is derived from a bimetallic MOF {[Ni0.5Co0.5(bpe)2(N(CN)2)](N(CN)2)·(5H2O)}n (1) via pyrolysis followed by calcination. Pyrolysis of the bimetallic MOF gives rise to bimetallic nanoparticles stabilized on NCNTs, which, when subsequently calcined, leads to the formation of a core-shell structure with a semiconducting oxide shell (NixCo1-xO) encapsulating the NixCo1-x bimetallic NP core. Detailed evaluation of the electrocatalytic performance of NixCo1-x@NixCo1-xO/NCNT proves its worth as a bifunctional catalyst with 380 mV overpotential for oxygen evolution reaction at 10 mA cm-2 current density and 0.87 V (vs RHE) onset for oxygen reduction reaction in the alkaline medium. Additionally, the prepared electrocatalyst efficiently catalyzes the hydrogen evolution reaction with a nominal overpotential of 74 mV (vs RHE) for reaching 10 mA cm-2 current density in acidic medium. The practical applicability of this catalyst is further upheld in the fabrication of a zinc-air battery having high specific capacity with high round-trip efficiency and adequate cycle life. DFT calculations establish that the structure of NixCo1-x@NixCo1-xO/NCNT is crucial for its electrochemical activity since it has the threefold advantages of cooperative charge transfer from Co to Ni, synergistic relationship between the conductive alloy core and semiconducting oxide shell, and a highly conductive N-doped CNT matrix.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...