Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Sci Monit ; 29: e941289, 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37543728

RESUMEN

BACKGROUND The microbiome is the collection of all micro-organisms and their genes, which naturally live in and on the body. The cervical and endometrial bacterial microbiome has previously been reported to affect fertility and influence the outcomes of assisted reproductive therapy (ART), including embryo transfer. This study aimed to evaluate the cervical and endometrial bacterial microbiome in 177 women treated for infertility before, during, and after embryo implantation, and the outcomes. MATERIAL AND METHODS Cervical and endometrial swabs were collected from 177 women diagnosed with infertility at 3 time points: (1) during the initial examination, (2) during implantation, (3) 10-14 days after implantation. Next-generation sequencing (NGS) was used to analyze the bacterial microbiome. Taxonomic identification was performed with the Usearch algorithm. RESULTS There was a significant change in the number of patients with Escherichia coli depending on the collection time. For the first swab collection, there were significant negative relationships between the percentage of Gardnerella vaginalis and Lactobacillus spp. For the second collection, there was a negative relationship between Lactobacillus helveticus and Lactobacillus jensenii. For the third collection, negative relationships were found between Escherichia coli and Lactobacillus spp. A similar distribution of the bacterial microbiome was observed in all 3 swab collections. CONCLUSIONS Lactobacillus spp. were the main bacteria identified in the cervix and endometrium, present before, during, and after successful embryo transfer. E. coli and G. vaginalis reduced the protective effect of Lactobacilli before, during, and after embryo transfer.


Asunto(s)
Infertilidad , Microbiota , Neoplasias del Cuello Uterino , Femenino , Humanos , Cuello del Útero , Escherichia coli , Implantación del Embrión , Endometrio , Bacterias/genética , Microbiota/genética , Vagina/microbiología
2.
J Cell Sci ; 131(24)2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30463853

RESUMEN

The protein Swi6 in Saccharomyces cerevisiae is a cofactor in two complexes that regulate the transcription of the genes controlling the G1/S transition. It also ensures proper oxidative and cell wall stress responses. Previously, we found that Swi6 was crucial for the survival of genotoxic stress. Here, we show that a lack of Swi6 causes replication stress leading to double-strand break (DSB) formation, inefficient DNA repair and DNA content alterations, resulting in high cell mortality. Comparative genome hybridization experiments revealed that there was a random genome rearrangement in swi6Δ cells, whereas in diploid swi6Δ/swi6Δ cells, chromosome V is duplicated. SWI4 and PAB1, which are located on chromosome V and are known multicopy suppressors of swi6Δ phenotypes, partially reverse swi6Δ genome instability when overexpressed. Another gene on chromosome V, RAD51, also supports swi6Δ survival, but at a high cost; Rad51-dependent illegitimate recombination in swi6Δ cells appears to connect DSBs, leading to genome rearrangement and preventing cell death.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Reparación del ADN/genética , Inestabilidad Genómica/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Genética/genética , Saccharomyces cerevisiae/metabolismo
3.
Oncotarget ; 8(15): 24988-25004, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28212567

RESUMEN

Ribosomal RNA-encoding genes (rDNA) are the most abundant genes in eukaryotic genomes. To meet the high demand for rRNA, rDNA genes are present in multiple tandem repeats clustered on a single or several chromosomes and are vastly transcribed. To facilitate intensive transcription and prevent rDNA destabilization, the rDNA-encoding portion of the chromosome is confined in the nucleolus. However, the rDNA region is susceptible to recombination and DNA damage, accumulating mutations, rearrangements and atypical DNA structures. Various sophisticated techniques have been applied to detect these abnormalities. Here, we present a simple method for the evaluation of the activity and integrity of an rDNA region called a "DNA cloud assay". We verified the efficacy of this method using yeast mutants lacking genes important for nucleolus function and maintenance (RAD52, SGS1, RRM3, PIF1, FOB1 and RPA12). The DNA cloud assay permits the evaluation of nucleolus status and is compatible with downstream analyses, such as the chromosome comet assay to identify DNA structures present in the cloud and mass spectrometry of agarose squeezed proteins (ASPIC-MS) to detect nucleolar DNA-bound proteins, including Las17, the homolog of human Wiskott-Aldrich Syndrome Protein (WASP).


Asunto(s)
Cromatina/metabolismo , ADN Ribosómico/genética , Cromatina/química , ADN Ribosómico/química , Humanos , Espectrometría de Masas/métodos , Sefarosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...