Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(2): e202112461, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34669241

RESUMEN

Binary mesocrystals offer the combination of nanocrystal properties in an ordered superstructure. Here, we demonstrate the simultaneous self-assembly of platinum and iron oxide nanocubes into micrometer-sized 3D mesocrystals using the gas-phase diffusion technique. By the addition of minor amounts of a secondary particle type tailored to nearly identical size, shape and surface chemistry, we were able to promote a random incorporation of foreign particles into a self-assembling host lattice. The random distribution of the binary particle types on the surface and within its bulk has been visualized using advanced transmission and scanning electron microscopy techniques. The 20-40 µm sized binary mesocrystals have been further characterized through wide and small angle scattering techniques to reveal a long-range ordering on the atomic scale throughout the crystal while showing clear evidence that the material consists of individual building blocks. Through careful adjustments of the crystallization parameters, we could further obtain a reverse superstructure, where incorporated particles and host lattice switch roles.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34443951

RESUMEN

Platinum nanoparticles are widely known for their numerous electrochemical and catalytic applications. Enhanced or novel properties that may arise when ordering such particles in a highly defined manner, however, are still subject to ongoing research, as superstructure formation on the mesoscale is still a major challenge to be overcome. In this work, we therefore established a reproducible method to fabricate micrometer-sized superstructures from platinum nanocubes. Through small-angle X-ray scattering and electron diffraction methods we demonstrate that the obtained superstructures have a high degree of ordering up to the atomic scale and, therefore, fulfill all criteria of a mesocrystal. By changing the solvent and stabilizer in which the platinum nanocubes were dispersed, we were able to control the resulting crystal habit of the mesocrystals. Aside from mesocrystal fabrication, this method can be further utilized to purify nanoparticle dispersions by recrystallization with respect to narrowing down the particle size distribution and removing contaminations.

3.
Nanoscale ; 12(14): 7792-7796, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32219240

RESUMEN

The coercivity of magnetic nanoparticles is enhanced by the exchange coupling effect at the interface of ferrimagnetic and antiferromagnetic self-assembled monolayers. Antiferromagnetic Co3O4 nanocubes were regularly stacked on an ordered monolayer of ferrimagnetic Fe3O4 nanocubes by layer-by-layer manipulation using evaporation-driven self-assembly. The ordered arrangements of the ferrimagnetic and antiferromagnetic nanocubes are effective for the enhancement of the ferromagnetic character.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...