Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 22(4): 941-952, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29386136

RESUMEN

Dopamine (DA) loss in Parkinson's disease (PD) alters the function of striatal projection neurons (SPNs) and causes motor deficits, but DA replacement can induce further abnormalities. A key pathological change in animal models and patients is SPN hyperactivity; however, the role of glutamate in altered DA responses remains elusive. We tested the effect of locally applied AMPAR or NMDAR antagonists on glutamatergic signaling in SPNs of parkinsonian primates. Following a reduction in basal hyperactivity by antagonists at either receptor, DA inputs induced SPN firing changes that were stable during the entire motor response, in clear contrast with the typically unstable effects. The SPN activity reduction over an extended putamenal area controlled the release of involuntary movements in the "on" state and therefore improved motor responses to DA replacement. These results demonstrate the pathophysiological role of upregulated SPN activity and support strategies to reduce striatal glutamate signaling for PD therapy.


Asunto(s)
Dopamina/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/fisiopatología , Animales , Modelos Animales de Enfermedad , Primates
3.
Anesthesiology ; 125(6): 1088-1089, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27753643

Asunto(s)
Anestésicos , Humanos
4.
Mol Pharmacol ; 85(4): 618-29, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24452473

RESUMEN

Three residues within the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluA1 C terminus (Ser818, Ser831, Thr840) can be phosphorylated by Ca(2+)/phospholipid-dependent protein kinase (PKC). Here, we show that PKC phosphorylation of GluA1 Ser818 or Thr840 enhances the weighted mean channel conductance without altering the response time course or agonist potency. These data support the idea that these residues constitute a hyper-regulatory domain for the AMPA receptor. Introduction of phosphomimetic mutations increases conductance only at these three sites within the proximal C terminus, consistent with a structural model with a flexible linker connecting the distal C-terminal domain to the more proximal domain containing a helix bracketed by Ser831 and Thr840. NMR spectra support this model and raise the possibility that phosphorylation can alter the configuration of this domain. Our findings provide insight into the structure and function of the C-terminal domain of GluA1, which controls AMPA receptor function and trafficking during synaptic plasticity in the central nervous system.


Asunto(s)
Proteína Quinasa C/metabolismo , Receptores AMPA/metabolismo , Serina/metabolismo , Treonina/metabolismo , Animales , Femenino , Células HEK293 , Hipocampo/citología , Humanos , Masculino , Ratones , Modelos Moleculares , Mutación , Neuronas/metabolismo , Técnicas de Placa-Clamp , Fosforilación , Cultivo Primario de Células , Conformación Proteica , Ratas , Receptores AMPA/agonistas , Receptores AMPA/genética
5.
Proc Natl Acad Sci U S A ; 110(3): 1077-82, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277581

RESUMEN

NMDA receptor activation can elicit synaptic plasticity by augmenting conductance of the AMPA receptor GluA1 subsequent to phosphorylation at S831 by Ca(2+)-dependent kinases. NMDA receptor activation also regulates synaptic plasticity by causing endocytosis of AMPA receptor GluA1. We demonstrate a unique signaling cascade for these processes mediated by NMDA receptor-dependent NO formation and GluA1 S-nitrosylation. Thus, S-nitrosylation of GluA1 at C875 enhances S831 phosphorylation, facilitates the associated AMPA receptor conductance increase, and results in endocytosis by increasing receptor binding to the AP2 protein of the endocytotic machinery.


Asunto(s)
Receptores AMPA/química , Receptores AMPA/metabolismo , Sustitución de Aminoácidos , Animales , Endocitosis , Células HEK293 , Hipocampo/metabolismo , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Plasticidad Neuronal , Neuronas/metabolismo , Donantes de Óxido Nítrico/metabolismo , Fosforilación , Ratas , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
6.
Channels (Austin) ; 6(1): 60-4, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22373567

RESUMEN

AMPA receptors mediate fast excitatory synaptic transmission in the brain, and are dynamically regulated by phosphorylation of multiple residues within the C-terminal domain. CaMKII phosphorylates Ser831 within the AMPA receptor GluA1 subunit to increase single channel conductance, and biochemical studies show that PKC can also phosphorylate this residue. In light of the discovery of additional PKC phosphorylation sites within the GluA1 C-terminus, it remains unclear whether PKC phosphorylation of Ser831 increases GluA1 conductance in intact receptors. Here, we report that the purified, catalytic subunit of PKC significantly increases the conductance of wild-type GluA1 AMPA receptors expressed in the presence of stargazin in HEK293T cells. Furthermore, the mutation GluA1-S831A blocks the functional effect of PKC. These findings suggest that GluA1 AMPA receptor conductance can be increased by activated CaMKII or PKC, and that phosphorylation at this site provides a mechanism for channel modulation via a variety of protein signaling cascades.


Asunto(s)
Proteína Quinasa C/fisiología , Receptores AMPA/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Células HEK293 , Humanos , Fosforilación , Subunidades de Proteína/fisiología , Ratas
7.
Nat Neurosci ; 14(6): 727-35, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21516102

RESUMEN

The function, trafficking and synaptic signaling of AMPA receptors are tightly regulated by phosphorylation. Ca(2+)/calmodulin-dependent kinase II (CaMKII) phosphorylates the GluA1 AMPA receptor subunit at Ser831 to increase single-channel conductance. We show that CaMKII increases the conductance of native heteromeric AMPA receptors in mouse hippocampal neurons through phosphorylation of Ser831. In addition, co-expression of transmembrane AMPA receptor regulatory proteins (TARPs) with recombinant receptors is required for phospho-Ser831 to increase conductance of heteromeric GluA1-GluA2 receptors. Finally, phosphorylation of Ser831 increases the efficiency with which each subunit can activate, independent of agonist efficacy, thereby increasing the likelihood that more receptor subunits will be simultaneously activated during gating. This underlies the observation that phospho-Ser831 increases the frequency of openings to larger conductances rather than altering unitary conductance. Together, these findings suggest that CaMKII phosphorylation of GluA1-Ser831 decreases the activation energy for an intrasubunit conformational change that regulates the conductance of the receptor when the channel pore opens.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/citología , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Animales , Regulación de la Expresión Génica/genética , Técnicas de Sustitución del Gen , Ratones , Ratones Endogámicos C57BL , Fosforilación , Serina/metabolismo , Transducción de Señal/genética
8.
J Neurosci ; 30(15): 5125-35, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20392935

RESUMEN

Ca(v)1 (L-type) channels and calmodulin-dependent protein kinase II (CaMKII) are key regulators of Ca(2+) signaling in neurons. CaMKII directly potentiates the activity of Ca(v)1.2 and Ca(v)1.3 channels, but the underlying molecular mechanisms are incompletely understood. Here, we report that the CaMKII-associated protein densin is required for Ca(2+)-dependent facilitation of Ca(v)1.3 channels. While neither CaMKII nor densin independently affects Ca(v)1.3 properties in transfected HEK293T cells, the two together augment Ca(v)1.3 Ca(2+) currents during repetitive, but not sustained, depolarizing stimuli. Facilitation requires Ca(2+), CaMKII activation, and its association with densin, as well as densin binding to the Ca(v)1.3 alpha(1) subunit C-terminal domain. Ca(v)1.3 channels and densin are targeted to dendritic spines in neurons and form a complex with CaMKII in the brain. Our results demonstrate a novel mechanism for Ca(2+)-dependent facilitation that may intensify postsynaptic Ca(2+) signals during high-frequency stimulation.


Asunto(s)
Canales de Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Sialoglicoproteínas/metabolismo , Animales , Canales de Calcio/genética , Línea Celular , Células Cultivadas , Espinas Dendríticas/enzimología , Espinas Dendríticas/metabolismo , Hipocampo/enzimología , Hipocampo/metabolismo , Humanos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Neuronas/enzimología , Neuronas/metabolismo , Ratas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA