Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Med Genet A ; : e63779, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853608

RESUMEN

Pathogenic variants in FLNA cause a diversity of X-linked developmental disorders associated with either preserved or diminished levels of filamin A protein and are conceptualized dichotomously as relating to underlying gain- or loss-of-function pathogenic mechanisms. Hemizygosity for germline deletions or truncating variants in FLNA is generally considered to result in embryonic lethality. Structurally, filamin A is composed of an N-terminal actin-binding region, followed by 24 immunoglobulin-like repeat units. The repeat domains are separated into distinct segments by two regions of low-complexity known as hinge-1 and hinge-2. Hinge-1 is proposed to confer flexibility to the otherwise rigid protein and is a target for cleavage by calpain with the resultant filamin fragments mediating crucial cellular signaling processes. Here, three families with pathogenic variants in FLNA that impair the function of hinge-1 in males are described, leading to distinct clinical phenotypes. One large in-frame deletion that includes the hinge leads to frontometaphyseal dysplasia in affected males and females, while two germline truncating variants located within the exon encoding hinge 1 result in phenotypes in males that are explained by exon skipping and under-expression of a transcript that deletes hinge-1 from the resultant protein. These three variants affecting hinge-1 indicate that this domain does not mediate cellular functions that, when deficientresult in embryonic lethality in males and that germline truncating variants in this region of FLNA can result in viable phenotypes in males.

2.
Am J Hum Genet ; 111(4): 729-741, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579670

RESUMEN

Glutamine synthetase (GS), encoded by GLUL, catalyzes the conversion of glutamate to glutamine. GS is pivotal for the generation of the neurotransmitters glutamate and gamma-aminobutyric acid and is the primary mechanism of ammonia detoxification in the brain. GS levels are regulated post-translationally by an N-terminal degron that enables the ubiquitin-mediated degradation of GS in a glutamine-induced manner. GS deficiency in humans is known to lead to neurological defects and death in infancy, yet how dysregulation of the degron-mediated control of GS levels might affect neurodevelopment is unknown. We ascertained nine individuals with severe developmental delay, seizures, and white matter abnormalities but normal plasma and cerebrospinal fluid biochemistry with de novo variants in GLUL. Seven out of nine were start-loss variants and two out of nine disrupted 5' UTR splicing resulting in splice exclusion of the initiation codon. Using transfection-based expression systems and mass spectrometry, these variants were shown to lead to translation initiation of GS from methionine 18, downstream of the N-terminal degron motif, resulting in a protein that is stable and enzymatically competent but insensitive to negative feedback by glutamine. Analysis of human single-cell transcriptomes demonstrated that GLUL is widely expressed in neuro- and glial-progenitor cells and mature astrocytes but not in post-mitotic neurons. One individual with a start-loss GLUL variant demonstrated periventricular nodular heterotopia, a neuronal migration disorder, yet overexpression of stabilized GS in mice using in utero electroporation demonstrated no migratory deficits. These findings underline the importance of tight regulation of glutamine metabolism during neurodevelopment in humans.


Asunto(s)
Epilepsia Generalizada , Glutamato-Amoníaco Ligasa , Glutamina , Animales , Humanos , Ratones , Encéfalo/metabolismo , Epilepsia Generalizada/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamatos/metabolismo , Glutamina/genética , Glutamina/metabolismo
3.
HGG Adv ; 5(3): 100287, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553851

RESUMEN

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.

4.
Hum Mutat ; 43(11): 1609-1628, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35904121

RESUMEN

An expanding range of genetic syndromes are characterized by genome-wide disruptions in DNA methylation profiles referred to as episignatures. Episignatures are distinct, highly sensitive, and specific biomarkers that have recently been applied in clinical diagnosis of genetic syndromes. Episignatures are contained within the broader disorder-specific genome-wide DNA methylation changes, which can share significant overlap among different conditions. In this study, we performed functional genomic assessment and comparison of disorder-specific and overlapping genome-wide DNA methylation changes related to 65 genetic syndromes with previously described episignatures. We demonstrate evidence of disorder-specific and recurring genome-wide differentially methylated probes (DMPs) and regions (DMRs). The overall distribution of DMPs and DMRs across the majority of the neurodevelopmental genetic syndromes analyzed showed substantial enrichment in gene promoters and CpG islands, and under-representation of the more variable intergenic regions. Analysis showed significant enrichment of the DMPs and DMRs in gene pathways and processes related to neurodevelopment, including neurogenesis, synaptic signaling and synaptic transmission. This study expands beyond the diagnostic utility of DNA methylation episignatures by demonstrating correlation between the function of the mutated genes and the consequent genomic DNA methylation profiles as a key functional element in the molecular etiology of genetic neurodevelopmental disorders.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo , Islas de CpG/genética , Metilación de ADN/genética , ADN Intergénico , Epigénesis Genética , Humanos , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Síndrome
5.
HGG Adv ; 3(1): 100075, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35047860

RESUMEN

Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.

6.
Am J Med Genet A ; 185(12): 3675-3682, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272929

RESUMEN

Pathogenic variation in the X-linked gene FLNA causes a wide range of human developmental phenotypes. Loss-of-function is usually male embryonic-lethal, and most commonly results in a neuronal migration disorder in affected females. Gain-of-function variants cause a spectrum of skeletal dysplasias that present with variable additional, often distinctive, soft-tissue anomalies in males and females. Here we present two, unrelated, male individuals with novel, intronic variants in FLNA that are predicted to be pathogenic. Their phenotypes are reminiscent of the gain-of-function spectrum without the skeletal manifestations. Most strikingly, they manifest urethral anomalies, cardiac malformations, and keloid scarring, all commonly encountered features of frontometaphyseal dysplasia. Both variants prevent inclusion of exon 40 into the FLNA transcript, predicting the in-frame deletion of 42 amino acids, however the abundance of FLNA protein was equivalent to that observed in healthy individuals. Loss of these 42 amino acids removes sites that mediate key FLNA functions, including binding of some ligands and phosphorylation. This phenotype further expands the spectrum of the FLNA filaminopathies.


Asunto(s)
Filaminas/genética , Frente/anomalías , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Predisposición Genética a la Enfermedad , Osteocondrodisplasias/genética , Niño , Cicatriz/complicaciones , Cicatriz/genética , Cicatriz/fisiopatología , Exones/genética , Frente/fisiopatología , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Variación Genética/genética , Humanos , Lactante , Queloide/complicaciones , Queloide/genética , Queloide/fisiopatología , Mutación con Pérdida de Función/genética , Masculino , Mutación/genética , Osteocondrodisplasias/fisiopatología , Linaje , Fenotipo , Fosforilación/genética , Uretra/anomalías , Uretra/fisiopatología
7.
Hum Mutat ; 41(5): 865-883, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32108395

RESUMEN

The X-linked filaminopathies represent a diverse group of clinical conditions, all caused by variants in the gene FLNA. FLNA encodes the widely expressed actin binding protein, filamin A that has multiple roles during embryonic development including cell migration, mechanical sensing, and cell signaling. In this review, we discuss the 10 distinct X-linked filaminopathy conditions that between them affect almost all organ systems, including the brain, skeleton, heart, and skin, highlighting the critical role of this protein in human development. We review each of the phenotypes and discuss their pathogenesis, where known. Assigning pathogenicity to variants in FLNA can prove difficult, especially for missense variants and small indels, in-part because of the X-linked nature of the phenotypes, the overlap of phenotypic features between conditions, and poor understanding of the function of certain protein domains. We outline here approaches to characterize phenotypes, highlight hotspot regions within FLNA commonly mutated in these conditions, and approaches to resolving some variants of uncertain significance.


Asunto(s)
Filaminas/genética , Genes Ligados a X , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Distrofias Musculares/diagnóstico , Distrofias Musculares/etiología , Mutación , Fenotipo , Alelos , Diagnóstico Diferencial , Facies , Filaminas/metabolismo , Mutación con Ganancia de Función , Regulación de la Expresión Génica , Pruebas Genéticas , Variación Genética , Humanos , Masculino , Distrofias Musculares/metabolismo , Especificidad de Órganos/genética , Radiografía , Transducción de Señal
8.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31970420

RESUMEN

CONTEXT: The WNT/ß-catenin pathway is central to the pathogenesis of various human diseases including those affecting bone development and tumor progression. OBJECTIVE: To evaluate the role of a gain-of-function variant in CTNNB1 in a child with a sclerosing bone dysplasia and an adrenocortical adenoma. DESIGN: Whole exome sequencing with corroborative biochemical analyses. PATIENTS: We recruited a child with a sclerosing bone dysplasia and an adrenocortical adenoma together with her unaffected parents. INTERVENTION: Whole exome sequencing and performance of immunoblotting and luciferase-based assays to assess the cellular consequences of a de novo variant in CTNNB1. MAIN OUTCOME MEASURE(S)/RESULT: A de novo variant in CTNNB1 (c.131C>T; p.[Pro44Leu]) was identified in a patient with a sclerosing bone dysplasia and an adrenocortical adenoma. A luciferase-based transcriptional assay of WNT signaling activity verified that the activity of ß-catenin was increased in the cells transfected with a CTNNB1p.Pro44Leu construct (P = 4.00 × 10-5). The ß-catenin p.Pro44Leu variant was also associated with a decrease in phosphorylation at Ser45 and Ser33/Ser37/Thr41 in comparison to a wild-type (WT) CTNNB1 construct (P = 2.16 × 10-3, P = 9.34 × 10-8 respectively). CONCLUSION: Increased ß-catenin activity associated with a de novo gain-of-function CTNNB1 variant is associated with osteosclerotic phenotype and adrenocortical neoplasia.


Asunto(s)
Neoplasias de la Corteza Suprarrenal/patología , Carcinoma Corticosuprarrenal/patología , Enfermedades del Desarrollo Óseo/patología , Mutación , beta Catenina/genética , Neoplasias de la Corteza Suprarrenal/genética , Carcinoma Corticosuprarrenal/genética , Enfermedades del Desarrollo Óseo/genética , Femenino , Humanos , Recién Nacido , Masculino , Linaje , Fenotipo , Pronóstico , Secuenciación del Exoma
10.
Cell Rep ; 25(10): 2729-2741.e6, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30517861

RESUMEN

The mammalian neocortex has undergone remarkable changes through evolution. A consequence of such rapid evolutionary events could be a trade-off that has rendered the brain susceptible to certain neurodevelopmental and neuropsychiatric conditions. We analyzed the exomes of 65 patients with the structural brain malformation periventricular nodular heterotopia (PH). De novo coding variants were observed in excess in genes defining a transcriptomic signature of basal radial glia, a cell type linked to brain evolution. In addition, we located two variants in human isoforms of two genes that have no ortholog in mice. Modulating the levels of one of these isoforms for the gene PLEKHG6 demonstrated its role in regulating neuroprogenitor differentiation and neuronal migration via RhoA, with phenotypic recapitulation of PH in human cerebral organoids. This suggests that this PLEKHG6 isoform is an example of a primate-specific genomic element supporting brain development.


Asunto(s)
Movimiento Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Alelos , Animales , Secuencia de Bases , Encéfalo/embriología , Encéfalo/metabolismo , Exoma/genética , Regulación de la Expresión Génica , Genoma , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Recién Nacido , Masculino , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Organoides/embriología , Primates , Isoformas de Proteínas/metabolismo , Especificidad de la Especie , Proteína de Unión al GTP rhoA/metabolismo
11.
Am J Hum Genet ; 102(6): 1115-1125, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29805041

RESUMEN

Spondylocarpotarsal synostosis syndrome (SCTS) is characterized by intervertebral fusions and fusion of the carpal and tarsal bones. Biallelic mutations in FLNB cause this condition in some families, whereas monoallelic variants in MYH3, encoding embryonic heavy chain myosin 3, have been implicated in dominantly inherited forms of the disorder. Here, five individuals without FLNB mutations from three families were hypothesized to be affected by recessive SCTS on account of sibling recurrence of the phenotype. Initial whole-exome sequencing (WES) showed that all five were heterozygous for one of two independent splice-site variants in MYH3. Despite evidence indicating that three of the five individuals shared two allelic haplotypes encompassing MYH3, no second variant could be located in the WES datasets. Subsequent genome sequencing of these three individuals demonstrated a variant altering a 5' UTR splice donor site (rs557849165 in MYH3) not represented by exome-capture platforms. When the cohort was expanded to 16 SCTS-affected individuals without FLNB mutations, nine had truncating mutations transmitted by unaffected parents, and six inherited the rs557849165 variant in trans, an observation at odds with the population allele frequency for this variant. The rs557849165 variant disrupts splicing in the 5' UTR but is still permissive of MYH3 translational initiation, albeit with reduced efficiency. Although some MYH3 variants cause dominant SCTS, these data indicate that others (notably truncating variants) do not, except in the context of compound heterozygosity for a second hypomorphic allele. These observations make genetic diagnosis challenging in the context of simplex presentations of the disorder.


Asunto(s)
Anomalías Múltiples/genética , Genes Recesivos , Vértebras Lumbares/anomalías , Enfermedades Musculoesqueléticas/genética , Mutación/genética , Cadenas Pesadas de Miosina/genética , Escoliosis/congénito , Sinostosis/genética , Vértebras Torácicas/anomalías , Alelos , Mapeo Cromosómico , Femenino , Filaminas/genética , Haplotipos/genética , Heterocigoto , Humanos , Masculino , Linaje , Fenotipo , Empalme del ARN/genética , Escoliosis/genética , Síndrome , Secuenciación del Exoma
12.
J Cell Sci ; 131(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654161

RESUMEN

During development, cycles of spatiotemporal remodeling of higher-order networks of actin filaments contribute to control cell fate specification and differentiation. Programs for controlling these dynamics are hard-wired into actin-regulatory proteins. The filamin family of actin-binding proteins exert crucial mechanotransduction and signaling functions in tissue morphogenesis. Filamin-B (FLNB) is a key player in chondrocyte progenitor differentiation for endochondral ossification. Biallelic loss-of-function mutations or gain-of-function mutations in FLNB cause two groups of skeletal disorders that can be attributed to either the loss of repressive function on TGF-ß signaling or a disruption in mechanosensory properties, respectively. In this Review, we highlight a unique family of vertebrate-specific short-lived filamin-binding proteins, the refilins (refilin-A and refilin-B), that modulate filamin-dependent actin crosslinking properties. Refilins are downstream TGF-ß effectors in epithelial cells. Double knockout of both refilin-A and refilin-B in mice results in precocious ossification of some axial skeletal elements, leading to malformations that are similar to those seen in FLNB-deficient mice. Based on these findings, we present a model summarizing the role of refilins in regulating the mechanosensory functions of FLNB during skeletal development. We also discuss the possible contribution of refilins to FLNB-related skeletal pathologies that are associated with gain-of-function mutations.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Filaminas/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Diferenciación Celular/fisiología , Humanos
13.
Hum Mutat ; 39(1): 103-113, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29024177

RESUMEN

Loss-of-function mutations in the X-linked gene FLNA can lead to abnormal neuronal migration, vascular and cardiac defects, and congenital intestinal pseudo-obstruction (CIPO), the latter characterized by anomalous intestinal smooth muscle layering. Survival in male hemizygotes for such mutations is dependent on retention of residual FLNA function but it is unclear why a subgroup of males with mutations in the 5' end of the gene can present with CIPO alone. Here, we demonstrate evidence for the presence of two FLNA isoforms differing by 28 residues at the N-terminus initiated at ATG+1 and ATG+82 . A male with CIPO (c.18_19del) exclusively expressed FLNA ATG+82 , implicating the longer protein isoform (ATG+1 ) in smooth muscle development. In contrast, mutations leading to reduction of both isoforms are associated with compound phenotypes affecting the brain, heart, and intestine. RNA-seq data revealed three distinct transcription start sites, two of which produce a protein isoform utilizing ATG+1 while the third utilizes ATG+82 . Transcripts sponsoring translational initiation at ATG+1 predominate in intestinal smooth muscle, and are more abundant compared with the level measured in fibroblasts. Together these observations describe a new mechanism of tissue-specific regulation of FLNA that could reflect the differing mechanical requirements of these cell types during development.


Asunto(s)
Filaminas/genética , Estudios de Asociación Genética , Heterogeneidad Genética , Mutación con Pérdida de Función , Fenotipo , Transcripción Genética , Adolescente , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Secuencia Conservada , Análisis Mutacional de ADN , Femenino , Filaminas/química , Filaminas/metabolismo , Tracto Gastrointestinal/metabolismo , Expresión Génica , Humanos , Imagen por Resonancia Magnética , Masculino , Músculo Liso/metabolismo , Isoformas de Proteínas , Adulto Joven
14.
Am J Med Genet A ; 173(7): 1739-1746, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28498505

RESUMEN

Frontometaphyseal dysplasia (FMD) is caused by gain-of-function mutations in the X-linked gene FLNA in approximately 50% of patients. Recently we characterized an autosomal dominant form of FMD (AD-FMD) caused by mutations in MAP3K7, which accounts for the condition in the majority of patients who lack a FLNA mutation. We previously also described a patient with a de novo variant in TAB2, which we hypothesized was causative of another form of AD-FMD. In this study, a cohort of 20 individuals with AD-FMD is clinically evaluated. This cohort consists of 15 individuals with the recently described, recurrent mutation (c.1454C>T) in MAP3K7, as well as three individuals with missense mutations that result in substitutions in the N-terminal kinase domain of TGFß-activated kinase 1 (TAK1), encoded by MAP3K7. Additionally, two individuals have missense variants in the gene TAB2, which encodes a protein with a close functional relationship to TAK1, TAK1-associated binding protein 2 (TAB2). Although the X-linked and autosomal dominant forms of FMD are very similar, there are distinctions to be made between the two conditions. Individuals with AD-FMD have characteristic facial features, and are more likely to be deaf, have scoliosis and cervical fusions, and have a cleft palate. Furthermore, there are features only found in AD-FMD in our review of the literature including valgus deformity of the feet and predisposition to keloid scarring. Finally, intellectual disability is present in a small number of subjects with AD-FMD but has not been described in association with X-linked FMD.

15.
Am J Hum Genet ; 99(2): 392-406, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27426733

RESUMEN

Frontometaphyseal dysplasia (FMD) is a progressive sclerosing skeletal dysplasia affecting the long bones and skull. The cause of FMD in some individuals is gain-of-function mutations in FLNA, although how these mutations result in a hyperostotic phenotype remains unknown. Approximately one half of individuals with FMD have no identified mutation in FLNA and are phenotypically very similar to individuals with FLNA mutations, except for an increased tendency to form keloid scars. Using whole-exome sequencing and targeted Sanger sequencing in 19 FMD-affected individuals with no identifiable FLNA mutation, we identified mutations in two genes-MAP3K7, encoding transforming growth factor ß (TGF-ß)-activated kinase (TAK1), and TAB2, encoding TAK1-associated binding protein 2 (TAB2). Four mutations were found in MAP3K7, including one highly recurrent (n = 15) de novo mutation (c.1454C>T [ p.Pro485Leu]) proximal to the coiled-coil domain of TAK1 and three missense mutations affecting the kinase domain (c.208G>C [p.Glu70Gln], c.299T>A [p.Val100Glu], and c.502G>C [p.Gly168Arg]). Notably, the subjects with the latter three mutations had a milder FMD phenotype. An additional de novo mutation was found in TAB2 (c.1705G>A, p.Glu569Lys). The recurrent mutation does not destabilize TAK1, or impair its ability to homodimerize or bind TAB2, but it does increase TAK1 autophosphorylation and alter the activity of more than one signaling pathway regulated by the TAK1 kinase complex. These findings show that dysregulation of the TAK1 complex produces a close phenocopy of FMD caused by FLNA mutations. Furthermore, they suggest that the pathogenesis of some of the filaminopathies caused by FLNA mutations might be mediated by misregulation of signaling coordinated through the TAK1 signaling complex.


Asunto(s)
Frente/anomalías , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Mutación/genética , Osteocondrodisplasias/genética , Transducción de Señal/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Femenino , Filaminas/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , FN-kappa B/metabolismo , Osteocondrodisplasias/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína
16.
J Mol Med (Berl) ; 93(7): 773-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25686753

RESUMEN

UNLABELLED: Filamin A, the filamentous protein encoded by the X-linked gene FLNA, cross-links cytoskeletal actin into three-dimensional networks, facilitating its role as a signalling scaffold and a mechanosensor of extrinsic shear forces. Central to these functions is the ability of FLNA to form V-shaped homodimers through its C-terminal located filamin repeat 24. Additionally, many proteins that interact with FLNA have a binding site that includes the C-terminus of the protein. Here, a cohort of patients with mutations affecting this region of the protein is studied, with particular emphasis on the phenotype of male hemizygotes. Seven unrelated families are reported, with five exhibiting a typical female presentation of periventricular heterotopia (PH), a neuronal migration disorder typically caused by loss-of-function mutations in FLNA. One male presents with widespread PH consistent with previous male phenotypes attributable to hypomorphic mutations in FLNA. In stark contrast, two brothers are described with a mild PH presentation, due to a missense mutation (p.Gly2593Glu) inserting a large negatively charged amino acid into the hydrophobic dimerisation interface of FLNA. Co-immunoprecipitation, in vitro cross-linking studies and gel filtration chromatography all demonstrated that homodimerisation of isolated FLNA repeat 24 is abolished by this p.Gly2593Glu substitution but that extended FLNA(Gly2593Glu) repeat 16-24 constructs exhibit dimerisation. These observations imply that other interactions apart from those mediated by the canonical repeat 24 dimerisation interface contribute to FLNA homodimerisation and that mutations affecting this region of the protein can have broad phenotypic effects. KEY MESSAGES: • Mutations in the X-linked gene FLNA cause a spectrum of syndromes. • Genotype-phenotype correlations are emerging but still remain unclear. • C-term mutations can confer male lethality, survival or connective tissue defects. • Mutations leading to the latter affect filamin dimerisation. • This deficit is compensated for by remotely acting domains elsewhere in FLNA.


Asunto(s)
Filaminas/genética , Heterotopia Nodular Periventricular/genética , Multimerización de Proteína/genética , Secuencia de Aminoácidos , Movimiento Celular/genética , Femenino , Fibroblastos , Estudios de Asociación Genética , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense/genética , Fenotipo , Estructura Terciaria de Proteína
17.
Nat Genet ; 45(11): 1300-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056717

RESUMEN

The regulated proliferation and differentiation of neural stem cells before the generation and migration of neurons in the cerebral cortex are central aspects of mammalian development. Periventricular neuronal heterotopia, a specific form of mislocalization of cortical neurons, can arise from neuronal progenitors that fail to negotiate aspects of these developmental processes. Here we show that mutations in genes encoding the receptor-ligand cadherin pair DCHS1 and FAT4 lead to a recessive syndrome in humans that includes periventricular neuronal heterotopia. Reducing the expression of Dchs1 or Fat4 within mouse embryonic neuroepithelium increased progenitor cell numbers and reduced their differentiation into neurons, resulting in the heterotopic accumulation of cells below the neuronal layers in the neocortex, reminiscent of the human phenotype. These effects were countered by concurrent knockdown of Yap, a transcriptional effector of the Hippo signaling pathway. These findings implicate Dchs1 and Fat4 upstream of Yap as key regulators of mammalian neurogenesis.


Asunto(s)
Cadherinas/genética , Corteza Cerebral/embriología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Proteínas Supresoras de Tumor/genética , Anomalías Múltiples/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Secuencia de Bases , Proteínas Relacionadas con las Cadherinas , Proteínas de Ciclo Celular , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Anomalías Craneofaciales/genética , Deformidades Congénitas del Pie/genética , Técnicas de Silenciamiento del Gen , Deformidades Congénitas de la Mano/genética , Humanos , Discapacidad Intelectual/genética , Inestabilidad de la Articulación/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Heterotopia Nodular Periventricular/genética , Fosfoproteínas/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Proteínas Señalizadoras YAP
18.
Neurogenetics ; 14(2): 113-21, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23456229

RESUMEN

Emery-Dreifuss muscular dystrophy (EDMD) is characterised by early-onset joint contractures, progressive muscular weakness and wasting and late-onset cardiac disease. The more common X-linked recessive form of EDMD is caused by mutations in either EMD (encoding emerin) or FHL1 (encoding four and a half LIM domains 1), while mutations in LMNA (encoding lamin A/C), SYNE1 (encoding nesprin-1) and SYNE2 (encoding nesprin-2) lead to autosomal dominant forms of the condition. Here, we identify a three-generation family with an extended EDMD phenotype due to a novel indel mutation in FHL1 that differentially affects the relative expression of the three known transcript isoforms produced from this locus. The additional phenotypic manifestations in this family-proportionate short stature, facial dysmorphism, pulmonary valvular stenosis, thoracic scoliosis, brachydactyly, pectus deformities and genital abnormalities-are reminiscent of phenotypes seen with dysregulated Ras-mitogen-activated protein kinase (RAS-MAPK) signalling [Noonan syndrome (NS) and related disorders]. The misexpression of FHL1 transcripts precipitated by this mutation, together with the role of FHL1 in the regulation of RAS-MAPK signalling, suggests that this mutation confers a complex phenotype through both gain- and loss-of-function mechanisms. This indel mutation in FHL1 broadens the spectrum of FHL1-related disorders and implicates it in the pathogenesis of NS spectrum disorders.


Asunto(s)
Mutación INDEL/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Proteínas Musculares/genética , Distrofia Muscular de Emery-Dreifuss/genética , Adulto , Anciano , Niño , Femenino , Humanos , Masculino , Proteínas Quinasas Activadas por Mitógenos/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patología , Linaje , Fenotipo , Isoformas de Proteínas/genética
19.
Am J Med Genet A ; 155A(10): 2397-408, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22043478

RESUMEN

Osteopathia striata with cranial sclerosis (OSCS) is an X-linked disease caused by truncating mutations in WTX. Females exhibit sclerotic striations on the long bones, cranial sclerosis, and craniofacial dysmorphism. Males with OSCS have significant skeletal sclerosis, do not have striations but do display a more severe phenotype commonly associated with gross structural malformations, patterning defects, and significant pre- and postnatal lethality. The recent description of mutations in WTX underlying OSCS has led to the identification of a milder, survivable phenotype in males. Individuals with this presentation can have, in addition to skeletal sclerosis, Hirschsprung disease, joint contractures, cardiomyopathy, and neuromuscular anomalies. A diagnosis of OSCS should be considered in males with macrocephaly, skeletal sclerosis that is most marked in the cranium and the absence of metaphyseal striations. The observation of striations in males may be indicative of a WTX mutation in a mosaic state supporting the contention that this sign in females is indicative of the differential lyonization of cells in the osteoblastic lineage.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/patología , Osteosclerosis/patología , Fenotipo , Proteínas Adaptadoras Transductoras de Señales/genética , Huesos/patología , Análisis Mutacional de ADN , Cartilla de ADN/genética , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Luciferasas , Masculino , Megalencefalia/patología , Osteosclerosis/genética , Proteínas Supresoras de Tumor/genética
20.
Proc Natl Acad Sci U S A ; 108(28): 11464-9, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21709252

RESUMEN

The intracellular localization and shape of the nucleus plays a central role in cellular and developmental processes. In fibroblasts, nuclear movement and shape are controlled by a specific perinuclear actin network made of contractile actin filament bundles called transmembrane actin-associated nuclear (TAN) lines that form a structure called the actin cap. The identification of regulatory proteins associated with this specific actin cytoskeletal dynamic is a priority for understanding actin-based changes in nuclear shape and position in normal and pathological situations. Here, we first identify a unique family of actin regulators, the refilin proteins (RefilinA and RefilinB), that stabilize specifically perinuclear actin filament bundles. We next identify the actin-binding filamin A (FLNA) protein as the downstream effector of refilins. Refilins act as molecular switches to convert FLNA from an actin branching protein into one that bundles. In NIH 3T3 fibroblasts, the RefilinB/FLNA complex organizes the perinuclear actin filament bundles forming the actin cap. Finally, we demonstrate that in epithelial normal murine mammary gland (NmuMG) cells, the RefilinB/FLNA complex controls formation of a new perinuclear actin network that accompanies nuclear shape changes during the epithelial-mesenchymal transition (EMT). Our studies open perspectives for further functional analyses of this unique actin-based network and shed light on FLNA function during development and in human syndromes associated with FLNA mutations.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Proteínas Contráctiles/metabolismo , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Animales , Astrocitoma/metabolismo , Astrocitoma/ultraestructura , Secuencia de Bases , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Línea Celular Tumoral , Núcleo Celular/ultraestructura , Dimerización , Transición Epitelial-Mesenquimal , Femenino , Filaminas , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Complejos Multiproteicos , Células 3T3 NIH , Dominios y Motivos de Interacción de Proteínas , ARN Interferente Pequeño/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...