Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Analyst ; 134(11): 2301-5, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19838419

RESUMEN

We demonstrate, with the example of the electroanalytical sensing of chromium(vi) using ultra-microelectrode arrays, that a larger number of microelectrodes comprising an array do not necessarily provide improved electroanalytical performance. Using a low density array, which consists of 256 microdiscs where each microdisc comprising the array has a radius of 10 microns in a cubic arrangement separated from their nearest neighbour by 100 microns, the electroanalytical sensing of chromium(vi) is shown to be possible over the range 13-428 microM with a limit of detection of 3.4 microM readily achievable. Using a high density microelectrode, consisting of 2597 microdiscs where each microdisc has a radius of 2.5 microns in a hexagonal pattern which are separated from their nearest neighbour by 55 microns, the electroanalytical performance, in terms of linear range and sensitivity, is considerably lower going against the misconception that a high density array should produce a superior analytical response. The reason for this disparity is discussed and it is shown that the arrangement of the microelectrodes on the array is critical due to the interaction of diffusion zones between neighbouring electrodes allowing analysts to make informed decisions on the conscientious choice of microelectrode arrays.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Cromo/análisis , Cromo/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/química , Difusión , Electroquímica , Límite de Detección , Microelectrodos
2.
Anal Methods ; 1(3): 183-187, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32938056

RESUMEN

The first example of a copper(ii) oxide screen printed electrode is reported which is characterised with microscopy and explored towards the electrochemical sensing of glucose, maltose, sucrose and fructose. It is shown that the non-enzymatic electrochemical sensing of glucose with cyclic voltammetry and amperometry is possible with low micro-molar up to milli-molar glucose readily detectable which compares competitively with nano-catalyst modified electrodes. The sensing of glucose shows a modest selectivity over maltose and sucrose while fructose is not detectable. An additional benefit of this approach is that metal oxides with known oxidation states can be incorporated into the screen printed electrodes allowing one to identify exactly the origin of the observed electro-catalytic response which is difficult when utilising metal oxide modified electrodes formed via electro-deposition techniques which result in a mixture of metal oxides/oxidation states. These next generation screen printed electrochemical sensing platforms provide a simplification over previous copper oxide systems offering a novel fabrication route for the mass production of electro-catalytic sensors for analytical and forensic applications.

3.
Anal Methods ; 1(1): 25-28, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32938138

RESUMEN

We explore the possible use of screen printing technology for fabricating disposable electrochemical platforms for the sensing of pH. These screen printed pH sensors incorporate the pH sensitive phenanthraquinone moiety which undergoes a Nernstian potential shift with pH, and the pH insensitive dimethylferrocene which acts as an internal reference. This generic approach offers a calibration-less and reproducible approach for portable pH measurements with the possibility of miniaturisation allowing incorporation into existing sensing devices. The advantages, limitations and future prospects of this fabrication approach for producing electrochemical platforms for pH sensing are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA