Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(10): e0275443, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36206246

RESUMEN

Disturbance gradients are particularly useful for understanding the relative influences of competition and dispersal. Shortly after disturbance, plant composition should be influenced more strongly by dispersal than competition; over time, this should reverse, with competition becoming more important. As such, we predicted that plant functional traits associated with high dispersal ability would be over-represented shortly after a disturbance event occurs, while those associated with high competitive ability would have increased representation as time progresses. Additionally, it has been suggested that competitive interactions may contribute to negative co-occurrence patterns; if this is the case, negative co-occurrence patterns should also increase as time-since-disturbance increases. Here, we examine how functional trait and co-occurrence patterns change over time following a herbicide-based disturbance, compared to undisturbed vegetation, in a temperate, old-field grassland dominated by herbaceous perennials. In our study system, negative co-occurrence patterns were most pronounced in disturbed plots one year after herbicide application, consistent with several lines of evidence that dispersal can strongly impact both composition and co-occurrence patterns. Over three years post-disturbance, co-occurrence patterns in disturbed plots decreased, becoming more similar to control plots. This pattern is inconsistent with the expectation that competition contributes to negative co-occurrence patterns, at least over three growing seasons. More pronounced negative co-occurrence patterns were associated with higher species evenness among plots. Functional traits related to increased dispersal (mean seed mass, and proportion of stoloniferous/rhizomatous species) and competitive ability (mean species height, and mean specific leaf area) did not differ significantly across treatments, with the exception of mean height in the third-year post-disturbance; however, the overall trajectory of this trait was inconsistent with theoretical expectations. Overall, co-occurrence patterns changed across the gradient of time-since disturbance, but not as expected; functional trait patterns (trait means, functional diversity measures) were not responsive to our experimental disturbance gradient.


Asunto(s)
Herbicidas , Plantas , Estaciones del Año , Semillas
2.
Ecol Evol ; 9(10): 5572-5592, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31160983

RESUMEN

The amount of dispersal that occurs among populations can be limited by landscape heterogeneity, which is often due to both natural processes and anthropogenic activity leading to habitat loss or fragmentation. Understanding how populations are structured and mapping existing dispersal corridors among populations is imperative to both determining contemporary forces mediating population connectivity, and informing proper management of species with fragmented populations. Furthermore, the contemporary processes mediating gene flow across heterogeneous landscapes on a large scale are understudied, particularly with respect to widespread species. This study focuses on a widespread game bird, the Ruffed Grouse (Bonasa umbellus), for which we analyzed samples from the western extent of the range. Using three types of genetic markers, we uncovered multiple factors acting in concert that are responsible for mediating contemporary population connectivity in this species. Multiple genetically distinct groups were detected; microsatellite markers revealed six groups, and a mitochondrial marker revealed four. Many populations of Ruffed Grouse are genetically isolated, likely by macrogeographic barriers. Furthermore, the addition of landscape genetic methods not only corroborated genetic structure results, but also uncovered compelling evidence that dispersal resistance created by areas of unsuitable habitat is the most important factor mediating population connectivity among the sampled populations. This research has important implications for both our study species and other inhabitants of the early successional forest habitat preferred by Ruffed Grouse. Moreover, it adds to a growing body of evidence that isolation by resistance is more prevalent in shaping population structure of widespread species than previously thought.

3.
Oecologia ; 189(4): 1071-1082, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30904947

RESUMEN

Flowering time is a trait that reflects the timing of specific resource requirements by plants. Consequently, several predictions have been made related to how species are assembled within communities according to flowering time. Strong overlap in flowering time among coexisting species may result from clustered abiotic resources, or contribute to improved pollination success. Conversely, low flowering time overlap (asynchrony) among coexisting species may reduce competition for soil, light, or pollinator resources and alleviate interspecific pollen transfer. Here, we present evidence that coexisting species in an old-field community generally overlap less in flowering time than expected under a commonly used and statistically validated null model. Flowering time asynchrony was more pronounced when abundance data were used (compared to presence-absence data), and when analyses focused on species that share bees as pollinators. Control and herbivore-exclusion plots did not differ in flowering time overlap, providing no evidence of the reduction in overlap expected to result from increased competition. Our results varied with the randomization algorithm used, emphasizing that the choice of algorithm can influence the outcome of null models. Our results varied between 2 years, with patterns being less clear in the second year, when both growing season and flowering times were contracted. Finally, we found evidence that further supports a previous finding that higher plot-level flowering time overlap was associated with higher proportions of introduced species. Reduced flowering time overlap among species in our focal community may promote coexistence via temporal niche differentiation and reduced competition for pollinators and other abiotic resources.


Asunto(s)
Flores , Polinización , Animales , Abejas , Plantas , Polen , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA