Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 200, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172512

RESUMEN

The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.


Asunto(s)
Nanopartículas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Ratones , Anticuerpos Neutralizantes , Macaca mulatta , Vacunación , Anticuerpos Antivirales , Anticuerpos Monoclonales , Vacunas contra la COVID-19 , Ferritinas , Glicoproteína de la Espiga del Coronavirus/genética
2.
Structure ; 32(2): 131-147.e7, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157856

RESUMEN

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Sitios de Unión , Epítopos
3.
Cell Rep ; 42(8): 112942, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561630

RESUMEN

Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.


Asunto(s)
Virus del Dengue , Dengue , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Epítopos , Macaca mulatta , Anticuerpos Antivirales , Anticuerpos Monoclonales , Vacunas Virales/uso terapéutico , Proteínas del Envoltorio Viral/química
4.
J Virol ; 97(7): e0159622, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37395646

RESUMEN

Novel therapeutic monoclonal antibodies (MAbs) must accommodate comprehensive breadth of activity against diverse sarbecoviruses and high neutralization potency to overcome emerging variants. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) in complex with MAb WRAIR-2063, a moderate-potency neutralizing antibody with exceptional sarbecovirus breadth, that targets the highly conserved cryptic class V epitope. This epitope overlaps substantially with the spike protein N-terminal domain (NTD) -interacting region and is exposed only when the spike is in the open conformation, with one or more RBDs accessible. WRAIR-2063 binds the RBD of SARS-CoV-2 WA-1, all variants of concern (VoCs), and clade 1 to 4 sarbecoviruses with high affinity, demonstrating the conservation of this epitope and potential resiliency against variation. We compare structural features of additional class V antibodies with their reported neutralization capacity to further explore the utility of the class V epitope as a pan-sarbecovirus vaccine and therapeutic target. IMPORTANCE Characterization of MAbs against SARS-CoV-2, elicited through vaccination or natural infection, has provided vital immunotherapeutic options for curbing the COVID-19 pandemic and has supplied critical insights into SARS-CoV-2 escape, transmissibility, and mechanisms of viral inactivation. Neutralizing MAbs that target the RBD but do not block ACE2 binding are of particular interest because the epitopes are well conserved within sarbecoviruses and MAbs targeting this area demonstrate cross-reactivity. The class V RBD-targeted MAbs localize to an invariant site of vulnerability, provide a range of neutralization potency, and exhibit considerable breadth against divergent sarbecoviruses, with implications for vaccine and therapeutic development.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Epítopos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/química , Anticuerpos Antivirales/metabolismo , Epítopos/química , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Dominios Proteicos , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Modelos Moleculares , Línea Celular
5.
Vaccines (Basel) ; 11(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36679887

RESUMEN

The emergence of novel potentially pandemic pathogens necessitates the rapid manufacture and deployment of effective, stable, and locally manufacturable vaccines on a global scale. In this study, the ability of the Escherichia coli expression system to produce the receptor binding domain (RBD) of the SARS-CoV-2 spike protein was evaluated. The RBD of the original Wuhan-Hu1 variant and of the Alpha and Beta variants of concern (VoC) were expressed in E. coli, and their biochemical and immunological profiles were compared to RBD produced in mammalian cells. The E. coli-produced RBD variants recapitulated the structural character of mammalian-expressed RBD and bound to human angiotensin converting enzyme (ACE2) receptor and a panel of neutralizing SARS-CoV-2 monoclonal antibodies. A pilot vaccination in mice with bacterial RBDs formulated with a novel liposomal adjuvant, Army Liposomal Formulation containing QS21 (ALFQ), induced polyclonal antibodies that inhibited RBD association to ACE2 in vitro and potently neutralized homologous and heterologous SARS-CoV-2 pseudoviruses. Although all vaccines induced neutralization of the non-vaccine Delta variant, only the Beta RBD vaccine produced in E. coli and mammalian cells effectively neutralized the Omicron BA.1 pseudovirus. These outcomes warrant further exploration of E. coli as an expression platform for non-glycosylated, soluble immunogens for future rapid response to emerging pandemic pathogens.

6.
PLoS Pathog ; 16(10): e1008923, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33048983

RESUMEN

Type III protein secretion systems (T3SS) deliver effector proteins from the Gram-negative bacterial cytoplasm into a eukaryotic host cell through a syringe-like, multi-protein nanomachine. Cytosolic components of T3SS include a portion of the export apparatus, which traverses the inner membrane and features the opening of the secretion channel, and the sorting complex for substrate recognition and for providing the energetics required for protein secretion. Two components critical for efficient effector export are the export gate protein and the ATPase, which are proposed to be linked by the central stalk protein of the ATPase. We present the structure of the soluble export gate homo-nonamer, CdsV, in complex with the central stalk protein, CdsO, of its cognate ATPase, both derived from Chlamydia pneumoniae. This structure defines the interface between these essential T3S proteins and reveals that CdsO engages the periphery of the export gate that may allow the ATPase to catalyze an opening between export gate subunits to allow cargo to enter the export apparatus. We also demonstrate through structure-based mutagenesis of the homologous export gate in Pseudomonas aeruginosa that mutation of this interface disrupts effector secretion. These results provide novel insights into the molecular mechanisms governing active substrate recognition and translocation through a T3SS.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Flagelos/metabolismo , Transporte de Proteínas/fisiología , Sistemas de Secreción Tipo III/metabolismo , Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Sistemas de Secreción Tipo III/química
7.
Proc Natl Acad Sci U S A ; 117(14): 8064-8073, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198200

RESUMEN

Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, PLoS One 8, e73204 (2013); S. Kozar et al., Cell Stem Cell 13, 626-633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen Clostridioides difficile, we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/patología , Colon/patología , Mucosa Intestinal/patología , Células Madre/patología , Animales , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Células Cultivadas , Clostridioides difficile/metabolismo , Infecciones por Clostridium/microbiología , Colon/citología , Colon/microbiología , Modelos Animales de Enfermedad , Femenino , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Ratones , Organoides , Cultivo Primario de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Madre/microbiología
8.
J Biol Chem ; 295(17): 5795-5806, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32107313

RESUMEN

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-ß-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Pseudomonas/metabolismo , Transducción de Señal , Proteínas de la Membrana Bacteriana Externa/química , Cristalografía por Rayos X , Modelos Moleculares , Periplasma/metabolismo , Conformación Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Pseudomonas/química , Sideróforos/metabolismo
9.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31912881

RESUMEN

The receptor for advanced glycation end products (RAGE) recognizes damage-associated molecular patterns (DAMPs) and plays a critical role for the innate immune response and sterile tissue inflammation. RAGE overexpression is associated with diabetic complications, neurodegenerative diseases and certain cancers. Yet, the molecular mechanism of ligand recognition by RAGE is insufficiently understood to rationalize the binding of diverse ligands. The N-terminal V-type Ig-domain of RAGE contains a triad of tryptophan residue; Trp51, Trp61 and Trp72. The role of these three Trp residues for domain folding, stability and binding of the RAGE ligand S100B was investigated through site-directed mutagenesis, UV/VIS, CD and fluorescence spectrometry, protein-protein interaction studies, and X-ray crystallography. The data show that the Trp triad stabilizes the folded V-domain by maintaining a short helix in the structure. Mutation of any Trp residue increases the structural plasticity of the domain. Residues Trp61 and Trp72 are involved in the binding of S100B, yet they are not strictly required for S100B binding. The crystal structure of the RAGE-derived peptide W72 in complex with S100B showed that Trp72 is deeply buried in a hydrophobic depression on the S100B surface. The studies suggest that multiple binding modes between RAGE and S100B exist and point toward a not previously recognized role of the Trp residues for RAGE-ligand binding. The Trp triad of the V-domain appears to be a suitable target for novel RAGE inhibitors, either in the form of monoclonal antibodies targeting this epitope, or small organic molecules.


Asunto(s)
Receptor para Productos Finales de Glicación Avanzada/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Mutación , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Secundaria de Proteína , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética , Subunidad beta de la Proteína de Unión al Calcio S100/química , Relación Estructura-Actividad , Triptófano
10.
Nat Microbiol ; 5(1): 102-107, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31712627

RESUMEN

Clostridioides (formerly Clostridium) difficile is a Gram-positive, spore-forming anaerobe and a leading cause of hospital-acquired infection and gastroenteritis-associated death in US hospitals1. The disease state is usually preceded by disruption of the host microbiome in response to antibiotic treatment and is characterized by mild to severe diarrhoea. C. difficile infection is dependent on the secretion of one or more AB-type toxins: toxin A (TcdA), toxin B (TcdB) and the C. difficile transferase toxin (CDT)2. Whereas TcdA and TcdB are considered the primary virulence factors, recent studies suggest that CDT increases the severity of C. difficile infection in some of the most problematic clinical strains3. To better understand how CDT functions, we used cryo-electron microscopy to define the structure of CDTb, the cell-binding component of CDT. We obtained structures of several oligomeric forms that highlight the conformational changes that enable conversion from a prepore to a ß-barrel pore. The structural analysis also reveals a glycan-binding domain and residues involved in binding the host-cell receptor, lipolysis-stimulated lipoprotein receptor. Together, these results provide a framework to understand how CDT functions at the host cell interface.


Asunto(s)
ADP Ribosa Transferasas/química , Proteínas Bacterianas/química , Toxinas Bacterianas/química , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Células CACO-2 , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Polisacáridos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Receptores de LDL/metabolismo
11.
Biomol NMR Assign ; 12(1): 91-94, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29071576

RESUMEN

Outer membrane TonB-dependent transducers (TBDTs) actively transport ferric siderophore complexes from the extracellular environment into Gram-negative bacteria. They also participate in a cell-surface signaling regulatory pathway that results in upregulation of the transducer itself, in response to iron-deplete conditions. The TBDT PupB transports ferric pseudobactin, and signals through its N-terminal signaling domain (NTSD), while the TBDT homolog PupA is signaling-inactive. Here, we report the NMR chemical shift assignments of the PupB-NTSD. This information will provide the basis for structural characterization of the PupB-NTSD to further explore its signaling properties.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Resonancia Magnética Nuclear Biomolecular , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Dominios Proteicos
12.
Biochemistry ; 54(38): 5867-77, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26313375

RESUMEN

Gram-negative bacteria tightly regulate intracellular levels of iron, an essential nutrient. To ensure this strict control, some outer membrane TonB-dependent transporters (TBDTs) that are responsible for iron import stimulate their own transcription in response to extracellular binding by an iron-laden siderophore. This process is mediated by an inner membrane sigma regulator protein (an anti-sigma factor) that transduces an unknown periplasmic signal from the TBDT to release an intracellular sigma factor from the inner membrane, which ultimately upregulates TBDT transcription. Here, we use the Pseudomonas putida ferric-pseudobactin BN7/BN8 sigma regulator, PupR, as a model system to understand the molecular mechanism of this conserved class of sigma regulators. We have determined the X-ray crystal structure of the cytoplasmic anti-sigma domain (ASD) of PupR to 2.0 Å. Size exclusion chromatography, small-angle X-ray scattering, and sedimentation velocity analytical ultracentrifugation all indicate that, in contrast to other ASDs, the PupR-ASD exists as a dimer in solution. Mutagenesis of residues at the dimer interface identified from the crystal structure disrupts dimerization and protein stability, as determined by sedimentation velocity analytical ultracentrifugation and thermal denaturation circular dichroism spectroscopy. These combined results suggest that this type of inner membrane sigma regulator may utilize an unusual mechanism to sequester their cognate sigma factors and prevent transcription activation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Pseudomonas putida/química , Cristalografía por Rayos X , Modelos Moleculares , Multimerización de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína
13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 5): 1176-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25945582

RESUMEN

S100B is a damage-associated molecular pattern protein that, when released into the extracellular milieu, triggers initiation of the inflammatory response through the receptor for advanced glycation end products (RAGE). Recognition of S100B is accomplished via the amino-terminal variable immunoglobulin domain (V-domain) of RAGE. To gain insights into this interaction, a complex between S100B and a 15-amino-acid peptide derived from residues 54-68 of the V-domain was crystallized. The X-ray crystal structure was solved to 2.55 Å resolution. There are two dimers of S100B and one peptide in the asymmetric unit. The binding interface of this peptide is compared with that found in the complex between S100B and the 12-amino-acid CapZ-derived peptide TRTK-12. This comparison reveals that although the peptides adopt completely different backbone structures, the residues buried at the interface interact with S100B in similar regions to form stable complexes. The binding affinities of S100B for the intact wild-type V-domain and a W61A V-domain mutant were determined to be 2.7 ± 0.5 and 1.3 ± 0.7 µM, respectively, using fluorescence titration experiments. These observations lead to a model whereby conformational flexibility in the RAGE receptor allows the adoption of a binding conformation for interaction with the stable hydrophobic groove on the surface of S100B.


Asunto(s)
Proteína CapZ/metabolismo , Fragmentos de Péptidos/metabolismo , Receptor para Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/química , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína
14.
PLoS One ; 10(2): e0116512, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25719602

RESUMEN

Maintaining the integrity of the genome requires the high fidelity duplication of the genome and the ability of the cell to recognize and repair DNA lesions. The heterotrimeric single stranded DNA (ssDNA) binding complex Replication Protein A (RPA) is central to multiple DNA processes, which are coordinated by RPA through its ssDNA binding function and through multiple protein-protein interactions. Many RPA interacting proteins have been reported through large genetic and physical screens; however, the number of interactions that have been further characterized is limited. To gain a better understanding of how RPA functions in DNA replication, repair, and cell cycle regulation and to identify other potential functions of RPA, a yeast two hybrid screen was performed using the yeast 70 kDa subunit, Replication Factor A1 (Rfa1), as a bait protein. Analysis of 136 interaction candidates resulted in the identification of 37 potential interacting partners, including the cell cycle regulatory protein and DNA damage clamp loader Rad24. The Rfa1-Rad24 interaction is not dependent on ssDNA binding. However, this interaction appears affected by DNA damage. The regions of both Rfa1 and Rad24 important for this interaction were identified, and the region of Rad24 identified is distinct from the region reported to be important for its interaction with Rfc2 5. This suggests that Rad24-Rfc2-5 (Rad24-RFC) recruitment to DNA damage substrates by RPA occurs, at least partially, through an interaction between the N terminus of Rfa1 and the C terminus of Rad24. The predicted structure and location of the Rad24 C-terminus is consistent with a model in which RPA interacts with a damage substrate, loads Rad24-RFC at the 5' junction, and then releases the Rad24-RFC complex to allow for proper loading and function of the DNA damage clamp.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Daño del ADN/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Metilmetanosulfonato/toxicidad , Datos de Secuencia Molecular , Plásmidos/genética , Plásmidos/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Estructura Terciaria de Proteína , Proteína de Replicación A/química , Proteína de Replicación A/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...