Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
bioRxiv ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38234759

RESUMEN

Mounting evidence suggests that the tissue inhibitor of metalloproteinases-2 (TIMP2) can reduce tumor burden and metastasis. However, the demonstration of such anti-tumor activity and associated mechanisms using in vivo tumor models is lacking. The effects of a Timp2 functional mutation and administration of recombinant TIMP2 were examined in both orthotopic and heterotopic murine models of lung cancer using C57Bl/6 syngeneic Lewis Lung 2-luciferase 2 cells (LL2-luc2) cells. Mice harboring a functional mutation of TIMP2 (mT2) display markedly increased primary lung tumor growth, increased mortality, enriched vasculature, and enhanced infiltration of pro-tumorigenic, immunosuppressive myeloid cells. Treatment with recombinant TIMP2 reduced primary tumor growth in both mutant and wild-type (wt) mice. Comparison of transcriptional profiles of lung tissues from tumor-free, wt versus mT2 mice reveals only minor changes. However, lung tumor-bearing mice of both genotypes demonstrate significant genotype-dependent changes in gene expression following treatment with TIMP. In tumor-bearing wt mice, TIMP2 treatment reduced the expression of upstream oncogenic mediators, whereas treatment of mT2 mice resulted in an immunomodulatory phenotype. A heterotopic subcutaneous model generating metastatic pulmonary tumors demonstrated that daily administration of recombinant TIMP2 significantly downregulates the expression of heat shock proteins, suggesting a reduction of cell-stress responses. In summary, we describe how TIMP2 exerts novel, anti-tumor effects in a murine model of lung cancer and that rTIMP2 treatment supports a normalizing effect on the tumor microenvironment. Our findings show that TIMP2 treatment demonstrates significant potential as an adjuvant in the treatment of NSCLC.

2.
Nat Struct Mol Biol ; 28(8): 662-670, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34381247

RESUMEN

Aerobic glycolysis in cancer cells, also known as the 'Warburg effect', is driven by hyperactivity of lactate dehydrogenase A (LDHA). LDHA is thought to be a substrate-regulated enzyme, but it is unclear whether a dedicated intracellular protein also regulates its activity. Here, we identify the human tumor suppressor folliculin (FLCN) as a binding partner and uncompetitive inhibitor of LDHA. A flexible loop within the amino terminus of FLCN controls movement of the LDHA active-site loop, tightly regulating its enzyme activity and, consequently, metabolic homeostasis in normal cells. Cancer cells that experience the Warburg effect show FLCN dissociation from LDHA. Treatment of these cells with a decapeptide derived from the FLCN loop region causes cell death. Our data suggest that the glycolytic shift of cancer cells is the result of FLCN inactivation or dissociation from LDHA. Together, FLCN-mediated inhibition of LDHA provides a new paradigm for the regulation of glycolysis.


Asunto(s)
Glucólisis/fisiología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Dominio Catalítico/fisiología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Lactato Deshidrogenasa 5/metabolismo , Transducción de Señal
3.
Carcinogenesis ; 41(3): 313-325, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31621840

RESUMEN

Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36-50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.


Asunto(s)
Carcinogénesis/genética , Proliferación Celular/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas , Análisis de Secuencia de ARN , Neoplasias de la Mama Triple Negativas/patología , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cell Rep ; 14(4): 872-884, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26804907

RESUMEN

The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias Renales/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteolisis , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo
5.
Cell Rep ; 12(6): 1006-18, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26235616

RESUMEN

The ability of Heat Shock Protein 90 (Hsp90) to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific "client" proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown. Here, we show that c-Abl kinase phosphorylates Y223 in human Aha1 (hAha1), promoting its interaction with Hsp90. This, consequently, results in an increased Hsp90 ATPase activity, enhances Hsp90 interaction with kinase clients, and compromises the chaperoning of non-kinase clients such as glucocorticoid receptor and CFTR. Suggesting a regulatory paradigm, we also find that Y223 phosphorylation leads to ubiquitination and degradation of hAha1 in the proteasome. Finally, pharmacologic inhibition of c-Abl prevents hAha1 interaction with Hsp90, thereby hypersensitizing cancer cells to Hsp90 inhibitors both in vitro and ex vivo.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Células HEK293 , Proteínas HSP90 de Choque Térmico/genética , Humanos , Inmunoprecipitación , Modelos Biológicos , Chaperonas Moleculares/genética , Fosforilación , Proteínas Proto-Oncogénicas c-abl/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...