Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(2): 102960, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38502686

RESUMEN

The widespread usage of next-generation sequencing methods for functional genomics studies requires standardized tools for consistent visualization of the associated data. Here, we present seqNdisplayR, an R package for plotting standard sequencing data coverage within a genomic region of interest in a customizable and reproducible manner. We describe steps for installing software, preparing data files, choosing options, and plotting data. This tool is readily available for users with no prior experience with R through the "Shiny app" interface. For complete details on the use and execution of this protocol, please refer to Lykke-Andersen et al.,1 Gockert et al.,2 and Rouviere et al.3.

2.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38370611

RESUMEN

The PP2A-B55 phosphatase regulates a plethora of signaling pathways throughout eukaryotes. How PP2A-B55 selects its substrates presents a severe knowledge gap. By integrating AlphaFold modelling with comprehensive high resolution mutational scanning, we show that α-helices in substrates bind B55 through an evolutionary conserved mechanism. Despite a large diversity in sequence and composition, these α-helices share key amino acid determinants that engage discrete hydrophobic and electrostatic patches. Using deep learning protein design, we generate a specific and potent competitive peptide inhibitor of PP2A-B55 substrate interactions. With this inhibitor, we uncover that PP2A-B55 regulates the nuclear exosome targeting complex by binding to an α-helical recruitment module in RBM7. Collectively, our findings provide a framework for the understanding and interrogation of PP2A-B55 in health and disease.

3.
Cell Rep ; 42(11): 113325, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37889751

RESUMEN

The RNA exosome is a versatile ribonuclease. In the nucleoplasm of mammalian cells, it is assisted by its adaptors the nuclear exosome targeting (NEXT) complex and the poly(A) exosome targeting (PAXT) connection. Via its association with the ARS2 and ZC3H18 proteins, NEXT/exosome is recruited to capped and short unadenylated transcripts. Conversely, PAXT/exosome is considered to target longer and adenylated substrates via their poly(A) tails. Here, mutational analysis of the core PAXT component ZFC3H1 uncovers a separate branch of the PAXT pathway, which targets short adenylated RNAs and relies on a direct ARS2-ZFC3H1 interaction. We further demonstrate that similar acidic-rich short linear motifs of ZFC3H1 and ZC3H18 compete for a common ARS2 epitope. Consequently, while promoting NEXT function, ZC3H18 antagonizes PAXT activity. We suggest that this organization of RNA decay complexes provides co-activation of NEXT and PAXT at loci with abundant production of short exosome substrates.


Asunto(s)
ARN Nuclear , Proteínas de Unión al ARN , Animales , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Mamíferos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Nuclear/genética , Proteínas de Unión al ARN/genética
4.
Mol Cell ; 83(13): 2240-2257.e6, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37329882

RESUMEN

The RNA-binding ARS2 protein is centrally involved in both early RNA polymerase II (RNAPII) transcription termination and transcript decay. Despite its essential nature, the mechanisms by which ARS2 enacts these functions have remained unclear. Here, we show that a conserved basic domain of ARS2 binds a corresponding acidic-rich, short linear motif (SLiM) in the transcription restriction factor ZC3H4. This interaction recruits ZC3H4 to chromatin to elicit RNAPII termination, independent of other early termination pathways defined by the cleavage and polyadenylation (CPA) and Integrator (INT) complexes. We find that ZC3H4, in turn, forms a direct connection to the nuclear exosome targeting (NEXT) complex, hereby facilitating rapid degradation of the nascent RNA. Hence, ARS2 instructs the coupled transcription termination and degradation of the transcript onto which it is bound. This contrasts with ARS2 function at CPA-instructed termination sites where the protein exclusively partakes in RNA suppression via post-transcriptional decay.


Asunto(s)
Proteínas Nucleares , Transcripción Genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN
5.
NAR Genom Bioinform ; 4(3): lqac071, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36128426

RESUMEN

The RNA exosome degrades transcripts in the nucleoplasm of mammalian cells. Its substrate specificity is mediated by two adaptors: the 'nuclear exosome targeting (NEXT)' complex and the 'poly(A) exosome targeting (PAXT)' connection. Previous studies have revealed some DNA/RNA elements that differ between the two pathways, but how informative these features are for distinguishing pathway targeting, or whether additional genomic features that are informative for such classifications exist, is unknown. Here, we leverage the wealth of available genomic data and develop machine learning models that predict exosome targets and subsequently rank the features the models use by their predictive power. As expected, features around transcript end sites were most predictive; specifically, the lack of canonical 3' end processing was highly predictive of NEXT targets. Other associated features, such as promoter-proximal G/C content and 5' splice sites, were informative, but only for distinguishing NEXT and not PAXT targets. Finally, we discovered predictive features not previously associated with exosome targeting, in particular RNA helicase DDX3X binding sites. Overall, our results demonstrate that nucleoplasmic exosome targeting is to a large degree predictable, and our approach can assess the predictive power of previously known and new features in an unbiased way.

6.
Mol Cell ; 82(13): 2505-2518.e7, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35688157

RESUMEN

In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3' end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome.


Asunto(s)
Exosomas , ARN , Núcleo Celular/genética , Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Exosomas/metabolismo , Humanos , Unión Proteica , ARN/genética , ARN/metabolismo , ARN Helicasas/metabolismo , Estabilidad del ARN/genética
7.
Mol Cell ; 82(9): 1691-1707.e8, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349793

RESUMEN

Transposable elements (TEs) are widespread genetic parasites known to be kept under tight transcriptional control. Here, we describe a functional connection between the mouse-orthologous "nuclear exosome targeting" (NEXT) and "human silencing hub" (HUSH) complexes, involved in nuclear RNA decay and the epigenetic silencing of TEs, respectively. Knocking out the NEXT component ZCCHC8 in embryonic stem cells results in elevated TE RNA levels. We identify a physical interaction between ZCCHC8 and the MPP8 protein of HUSH and establish that HUSH recruits NEXT to chromatin at MPP8-bound TE loci. However, while NEXT and HUSH both dampen TE RNA expression, their activities predominantly affect shorter non-polyadenylated and full-length polyadenylated transcripts, respectively. Indeed, our data suggest that the repressive action of HUSH promotes a condition favoring NEXT RNA decay activity. In this way, transcriptional and post-transcriptional machineries synergize to suppress the genotoxic potential of TE RNAs.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Exosomas , Animales , Cromatina/genética , Cromatina/metabolismo , Elementos Transponibles de ADN/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , ARN/metabolismo , Estabilidad del ARN
8.
Biochem Soc Trans ; 50(1): 283-295, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35166324

RESUMEN

Transcription establishes the universal first step of gene expression where RNA is produced by a DNA-dependent RNA polymerase. The most versatile of eukaryotic RNA polymerases, RNA polymerase II (Pol II), transcribes a broad range of DNA including protein-coding and a variety of non-coding transcription units. Although Pol II can be configured as a durable enzyme capable of transcribing hundreds of kilobases, there is reliable evidence of widespread abortive Pol II transcription termination shortly after initiation, which is often followed by rapid degradation of the associated RNA. The molecular details underlying this phenomenon are still vague but likely reflect the action of quality control mechanisms on the early Pol II complex. Here, we summarize current knowledge of how and when such promoter-proximal quality control is asserted on metazoan Pol II.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Animales , Regiones Promotoras Genéticas , ARN/genética , ARN Polimerasa II/metabolismo
9.
Nucleic Acids Res ; 50(3): 1583-1600, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35048984

RESUMEN

Turnover of nucleoplasmic transcripts by the mammalian multi-subunit RNA exosome is mediated by two adaptors: the Nuclear EXosome Targeting (NEXT) complex and the Poly(A) tail eXosome Targeting (PAXT) connection. Functional analyses of NEXT and PAXT have largely utilized long-term factor depletion strategies, facilitating the appearance of indirect phenotypes. Here, we rapidly deplete NEXT, PAXT and core exosome components, uncovering the direct consequences of their acute losses. Generally, proteome changes are sparse and largely dominated by co-depletion of other exosome and adaptor subunits, reflecting possible subcomplex compositions. While parallel high-resolution 3' end sequencing of newly synthesized RNA confirms previously established factor specificities, it concomitantly demonstrates an inflation of long-term depletion datasets by secondary effects. Most strikingly, a general intron degradation phenotype, observed in long-term NEXT depletion samples, is undetectable upon short-term depletion, which instead emphasizes NEXT targeting of snoRNA-hosting introns. Further analysis of these introns uncovers an unusual mode of core exosome-independent RNA decay. Our study highlights the accumulation of RNAs as an indirect result of long-term decay factor depletion, which we speculate is, at least partly, due to the exhaustion of alternative RNA decay pathways.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma , Estabilidad del ARN , Núcleo Celular/genética , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN/genética , ARN/metabolismo , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , ARN Nucleolar Pequeño/metabolismo
10.
RNA Biol ; 18(sup1): 537-547, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34470577

RESUMEN

Many long noncoding RNAs (lncRNAs) are localized in the nucleus and play important roles in various biological processes, including cell proliferation, differentiation and antiviral response. Yet, it remains unclear how some nuclear lncRNAs are turned over. Here we show that the heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) controls expression levels of NEAT1v2, a lncRNA involved in the formation of nuclear paraspeckles. hnRNPH1 associates, in an RNA-independent manner, with the RNA helicase MTR4/MTREX, an essential co-factor of the nuclear ribonucleolytic RNA exosome. hnRNPH1 localizes in nuclear speckles and depletion of hnRNPH1 enhances NEAT1v2-mediated expression of the IL8 mRNA, encoding a cytokine involved in the innate immune response. Taken together, our results indicate that the hnRNPH1-MTR4 linkage regulates IL8 expression through the degradation of NEAT1v2 RNA.


Asunto(s)
Núcleo Celular/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interleucina-8/metabolismo , ARN Helicasas/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/química , Núcleo Celular/genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Interleucina-8/genética , Unión Proteica , ARN Helicasas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
11.
Genes Dev ; 35(17-18): 1290-1303, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34385261

RESUMEN

Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in S. cerevisiae, we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Poliadenilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Nat Commun ; 12(1): 4951, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400637

RESUMEN

The polyadenosine tail (poly[A]-tail) is a universal modification of eukaryotic messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). In budding yeast, Pap1-synthesized mRNA poly(A) tails enhance export and translation, whereas Trf4/5-mediated polyadenylation of ncRNAs facilitates degradation by the exosome. Using direct RNA sequencing, we decipher the extent of poly(A) tail dynamics in yeast defective in all relevant exonucleases, deadenylases, and poly(A) polymerases. Predominantly ncRNA poly(A) tails are 20-60 adenosines long. Poly(A) tails of newly transcribed mRNAs are 50 adenosine long on average, with an upper limit of 200. Exonucleolysis by Trf5-assisted nuclear exosome and cytoplasmic deadenylases trim the tails to 40 adenosines on average. Surprisingly, PAN2/3 and CCR4-NOT deadenylase complexes have a large pool of non-overlapping substrates mainly defined by expression level. Finally, we demonstrate that mRNA poly(A) tail length strongly responds to growth conditions, such as heat and nutrient deprivation.


Asunto(s)
Poli A/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Exosomas/metabolismo , Poliadenilación , Polinucleotido Adenililtransferasa/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34402854

RESUMEN

Long-lasting immunity depends on the generation of protective antibodies through the germinal center (GC) reaction. N6-methyladenosine (m6A) modification of mRNAs by METTL3 activity modulates transcript lifetime primarily through the function of m6A readers; however, the physiological role of this molecular machinery in the GC remains unknown. Here, we show that m6A modifications by METTL3 are required for GC maintenance through the differential functions of m6A readers. Mettl3-deficient GC B cells exhibited reduced cell-cycle progression and decreased expression of proliferation- and oxidative phosphorylation-related genes. The m6A binder, IGF2BP3, was required for stabilization of Myc mRNA and expression of its target genes, whereas the m6A reader, YTHDF2, indirectly regulated the expression of the oxidative phosphorylation gene program. Our findings demonstrate how two independent gene networks that support critical GC functions are modulated by m6A through distinct mRNA binders.


Asunto(s)
Centro Germinal/fisiología , Metiltransferasas/metabolismo , ARN/metabolismo , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Animales , Linfocitos B/patología , Ciclo Celular/genética , Regulación de la Expresión Génica , Genes myc , Centro Germinal/patología , Metilación , Metiltransferasas/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación Oxidativa , ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Smegmamorpha , Bazo/patología
14.
Biochem Soc Trans ; 49(3): 1325-1336, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34060620

RESUMEN

ARS2/SRRT is an essential eukaryotic protein that has emerged as a critical factor in the sorting of functional from non-functional RNA polymerase II (Pol II) transcripts. Through its interaction with the Cap Binding Complex (CBC), it associates with the cap of newly made RNAs and acts as a hub for competitive exchanges of protein factors that ultimately determine the fate of the associated RNA. The central position of the protein within the nuclear gene expression machinery likely explains why its depletion causes a broad range of phenotypes, yet an exact function of the protein remains elusive. Here, we consider the literature on ARS2/SRRT with the attempt to garner the threads into a unifying working model for ARS2/SRRT function at the nexus of Pol II transcription, transcript maturation and quality control.


Asunto(s)
Núcleo Celular/genética , Proteínas Nucleares/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN/genética , Transcripción Genética , Animales , Núcleo Celular/metabolismo , Humanos , Control de Calidad , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo
15.
Methods Enzymol ; 655: 139-164, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34183119

RESUMEN

The identity and metabolism of RNAs are often governed by their 5' and 3' ends. Single gene loci produce a variety of transcript isoforms, varying primarily in their RNA 3' end status and consequently facing radically different cellular fates. Knowledge about RNA termini is therefore key to understanding the diverse RNA output from individual transcription units. In addition, the 3' end of a nascent RNA at the catalytic center of RNA polymerase provides a precise and strand-specific measure of the transcription process. Here, we describe a modified RNA 3' end sequencing method, that utilizes the in vivo metabolic labeling of RNA followed by its purification and optional in vitro polyadenylation to provide a comprehensive view of all RNA 3' ends. The strategy offers the advantages of (i) nucleotide resolution mapping of RNA 3' ends, (ii) increased sequencing depth of lowly abundant RNA and (iii) inference of RNA 3' end polyadenylation status. We have used the method to study RNA decay and transcription termination mechanisms with the potential utility to a wider range of biological questions.


Asunto(s)
Poliadenilación , ARN , ARN/genética , Estabilidad del ARN , Transcripción Genética
16.
Mol Cell ; 81(3): 514-529.e6, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33385327

RESUMEN

Termination of RNA polymerase II (RNAPII) transcription in metazoans relies largely on the cleavage and polyadenylation (CPA) and integrator (INT) complexes originally found to act at the ends of protein-coding and small nuclear RNA (snRNA) genes, respectively. Here, we monitor CPA- and INT-dependent termination activities genome-wide, including at thousands of previously unannotated transcription units (TUs), producing unstable RNA. We verify the global activity of CPA occurring at pA sites indiscriminately of their positioning relative to the TU promoter. We also identify a global activity of INT, which is largely sequence-independent and restricted to a ~3-kb promoter-proximal region. Our analyses suggest two functions of genome-wide INT activity: it dampens transcriptional output from weak promoters, and it provides quality control of RNAPII complexes that are unfavorably configured for transcriptional elongation. We suggest that the function of INT in stable snRNA production is an exception from its general cellular role, the attenuation of non-productive transcription.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , ARN Nuclear Pequeño/biosíntesis , Terminación de la Transcripción Genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Poliadenilación , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Nuclear Pequeño/genética
17.
Elife ; 92020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33174841

RESUMEN

Circular RNAs are important for many cellular processes but their mechanisms of action remain poorly understood. Here, we map circRNA inventories of mouse embryonic stem cells, neuronal progenitor cells and differentiated neurons and identify hundreds of highly expressed circRNAs. By screening several candidate circRNAs for a potential function in neuronal differentiation, we find that circZNF827 represses expression of key neuronal markers, suggesting that this molecule negatively regulates neuronal differentiation. Among 760 tested genes linked to known neuronal pathways, knockdown of circZNF827 deregulates expression of numerous genes including nerve growth factor receptor (NGFR), which becomes transcriptionally upregulated to enhance NGF signaling. We identify a circZNF827-nucleated transcription-repressive complex containing hnRNP-K/L proteins and show that knockdown of these factors strongly augments NGFR regulation. Finally, we show that the ZNF827 protein is part of the mRNP complex, suggesting a functional co-evolution of a circRNA and the protein encoded by its linear pre-mRNA host.


Asunto(s)
Diferenciación Celular , ARN Circular/metabolismo , Transcripción Genética , Animales , Células Madre Embrionarias/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Neuronas/metabolismo , Receptores de Ácido Retinoico/metabolismo
18.
Nucleic Acids Res ; 48(18): 10413-10427, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32960271

RESUMEN

The nuclear Cap-Binding Complex (CBC), consisting of Nuclear Cap-Binding Protein 1 (NCBP1) and 2 (NCBP2), associates with the nascent 5'cap of RNA polymerase II transcripts and impacts RNA fate decisions. Recently, the C17orf85 protein, also called NCBP3, was suggested to form an alternative CBC by replacing NCBP2. However, applying protein-protein interaction screening of NCBP1, 2 and 3, we find that the interaction profile of NCBP3 is distinct. Whereas NCBP1 and 2 identify known CBC interactors, NCBP3 primarily interacts with components of the Exon Junction Complex (EJC) and the TRanscription and EXport (TREX) complex. NCBP3-EJC association in vitro and in vivo requires EJC core integrity and the in vivo RNA binding profiles of EJC and NCBP3 overlap. We further show that NCBP3 competes with the RNA degradation factor ZC3H18 for binding CBC-bound transcripts, and that NCBP3 positively impacts the nuclear export of polyadenylated RNAs and the expression of large multi-exonic transcripts. Collectively, our results place NCBP3 with the EJC and TREX complexes in supporting mRNA expression.


Asunto(s)
ARN Mensajero/genética , Proteínas de Unión al ARN/genética , ARN/genética , Transcripción Genética , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/genética , Exones , Regulación de la Expresión Génica/genética , Humanos , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Proteínas de Unión a Caperuzas de ARN/genética , ARN Polimerasa II/genética , Estabilidad del ARN/genética , Transporte de ARN/genética , Factores de Transcripción/genética
19.
Nucleic Acids Res ; 48(18): 10456-10469, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32960270

RESUMEN

A 5',7-methylguanosine cap is a quintessential feature of RNA polymerase II-transcribed RNAs, and a textbook aspect of co-transcriptional RNA processing. The cap is bound by the cap-binding complex (CBC), canonically consisting of nuclear cap-binding proteins 1 and 2 (NCBP1/2). Interest in the CBC has recently renewed due to its participation in RNA-fate decisions via interactions with RNA productive factors as well as with adapters of the degradative RNA exosome. A novel cap-binding protein, NCBP3, was recently proposed to form an alternative CBC together with NCBP1, and to interact with the canonical CBC along with the protein SRRT. The theme of post-transcriptional RNA fate, and how it relates to co-transcriptional ribonucleoprotein assembly, is abundant with complicated, ambiguous, and likely incomplete models. In an effort to clarify the compositions of NCBP1-, 2- and 3-related macromolecular assemblies, we have applied an affinity capture-based interactome screen where the experimental design and data processing have been modified to quantitatively identify interactome differences between targets under a range of experimental conditions. This study generated a comprehensive view of NCBP-protein interactions in the ribonucleoprotein context and demonstrates the potential of our approach to benefit the interpretation of complex biological pathways.


Asunto(s)
Complejo Proteico Nuclear de Unión a la Caperuza/genética , Proteínas Nucleares/genética , Proteoma/genética , Proteínas de Unión a Caperuzas de ARN/genética , Citoplasma/inmunología , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Humanos , Proteómica/métodos , Caperuzas de ARN/genética , ARN Polimerasa II/genética
20.
Sci Adv ; 6(27): eaaz9072, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32923585

RESUMEN

RNA 3' end processing provides a source of transcriptome diversification which affects various (patho)-physiological processes. A prime example is the transcript isoform switch that leads to the read-through expression of the long non-coding RNA NEAT1_2, at the expense of the shorter polyadenylated transcript NEAT1_1. NEAT1_2 is required for assembly of paraspeckles (PS), nuclear bodies that protect cancer cells from oncogene-induced replication stress and chemotherapy. Searching for proteins that modulate this event, we identified factors involved in the 3' end processing of polyadenylated RNA and components of the Integrator complex. Perturbation experiments established that, by promoting the cleavage of NEAT1_2, Integrator forces NEAT1_2 to NEAT1_1 isoform switching and, thereby, restrains PS assembly. Consistently, low levels of Integrator subunits correlated with poorer prognosis of cancer patients exposed to chemotherapeutics. Our study establishes that Integrator regulates PS biogenesis and a link between Integrator, cancer biology, and chemosensitivity, which may be exploited therapeutically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...