Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
RSC Adv ; 14(18): 12496-12512, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633500

RESUMEN

Assessment of the performance of linear and nonlinear regression-based methods for estimating in situ catalytic CO2 transformations employing TiO2/Cu coupled with hydrogen exfoliation graphene (HEG) has been investigated. The yield of methanol was thoroughly optimized and predicted using response surface methodology (RSM) and artificial neural network (ANN) model after rigorous experimentation and comparison. Amongst the different types of HEG loading from 10 to 40 wt%, the 30 wt% in the HEG-TiO2/Cu assisted photosynthetic catalyst was found to be successful in providing the highest conversion efficiency of methanol from CO2. The most influencing parameters, HEG dosing and inflow rate of CO2, were found to affect the conversion rate in the acidic reaction regime (at pH of 3). According to RSM and ANN, the optimum methanol yields were 36.3 mg g-1 of catalyst and 37.3 mg g-1 of catalyst, respectively. Through the comparison of performances using the least squared error analysis, the nonlinear regression-based ANN showed a better determination coefficient (overall R2 > 0.985) than the linear regression-based RSM model (overall R2 ∼ 0.97). Even though both models performed well, ANN, consisting of 9 neurons in the input and 1 hidden layer, could predict optimum results closer to RSM in terms of agreement with the experimental outcome.

2.
Environ Pollut ; 349: 123902, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580061

RESUMEN

The textile industry contributes substantially to water pollution. To investigate bioremediation of dye-containing wastewater, the decolorization and biotransformation of three textile azo dyes, Red HE8B, Reactive Green 27, and Acid Blue 29, were considered using an integrated remediation approach involving the microalga Chlamydomonas mexicana and activated sludge (ACS). At a 5 mg L-1 dye concentration, using C. mexicana and ACS alone, decolorization percentages of 39%-64% and 52%-54%, respectively, were obtained. In comparison, decolorization percentages of 75%-79% were obtained using a consortium of C. mexicana and ACS. The same trend was observed for the decolorization of dyes at higher concentrations, but the potential for decolorization was low. The toxic azo dyes adversely affect the growth of microalgae and at high concentration 50 mg L-1 the growth rate inhibited to 50-60% as compared to the control. The natural textile wastewater was also treated with the same pattern and got promising results of decolorization (90%). Moreover, the removal of BOD (82%), COD (72%), TN (64%), and TP (63%) was observed with the consortium. The HPLC and GC-MS confirm dye biotransformation, revealing the emergence of new peaks and the generation of multiple metabolites with more superficial structures, such as N-hydroxy-aniline, naphthalene-1-ol, and sodium hydroxy naphthalene. This analysis demonstrates the potential of the C. mexicana and ACS consortium for efficient, eco-friendly bioremediation of textile azo dyes.


Asunto(s)
Biodegradación Ambiental , Colorantes , Microalgas , Aguas del Alcantarillado , Industria Textil , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Colorantes/metabolismo , Colorantes/química , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/metabolismo , Microalgas/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Textiles , Compuestos Azo/metabolismo
3.
Bioorg Med Chem Lett ; 103: 129707, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492608

RESUMEN

The design and development of novel antimicrobial agents are highly desired to combat the emergence of medication resistance against microorganisms that cause infections. A series of new pyrimidine-linked thiazolidinedione derivatives (5a-j) were synthesized, characterized, and their antimicrobial properties assessed in the current investigation. Here, novel pyrimidine-linked thiazolidinedione compounds were designed using the molecular hybridization approach. Elemental and spectral techniques were used to determine the structures of the synthesized hybrids. The majority of compounds showed encouraging antibacterial properties. Among the active compounds, 5g, 5i, and 5j showed 1.85, 1.15, and 1.38 times the activity of streptomycin against S. aureus, respectively, with MIC values of 6.4, 10.3, and 8.6 µM. With MIC values of 10.8, 21.9, and 15.4 µM, respectively, the compounds 5g, 5i, and 5j showed 2.14, 1.05, and 1.50 times the activity of linezolid against the methicillin-resistant S. aureus (MRSA) strain. Furthermore, when compared to the reference medications, compounds 5g, 5i, and 5j demonstrated broad-range antimicrobial efficacy against all tested strains of bacteria and fungus. Out of all the compounds that were investigated, compounds 5g, 5i, and 5j showed noteworthy anti-tubercular activity. 5g is the most effective, 1.59 times more effective than reference drug isoniazid. To anticipate the binding manner, the synthesized potent compounds were subjected to molecular docking into the active binding site of MRSA and the mycobacterial membrane protein large 3 (MmpL3) protein. The compounds 5g, 5i, and 5j may eventually serve as lead compounds in the search for antimicrobial and anti-TB therapeutic agents.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Tiazolidinedionas , Antituberculosos , Simulación del Acoplamiento Molecular , Staphylococcus aureus/metabolismo , Relación Estructura-Actividad , Antiinfecciosos/farmacología , Antibacterianos/química , Tiazolidinedionas/farmacología , Pirimidinas/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular
4.
ACS Omega ; 9(10): 11181-11193, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38497000

RESUMEN

The present study deals with two-phase non-Newtonian pseudoplastic crude oil and water flow inside horizontal pipes simulated by ANSYS. The study helps predict velocity and velocity profiles, as well as pressure drop during two-phase crude-oil-water flow, without complex calculations. Computational fluid dynamics (CFD) analysis will be very important in reducing the experimental cost and the effort of data acquisition. Three independent horizontal stainless steel pipes (SS-304) with inner diameters of 1 in., 1.5 in., and 2 in. were used to circulate crude oil with 5, 10, and 15% v/v water for simulation purposes. The entire length of the pipes, along with their surfaces, were insulated to reduce heat loss. A grid size of 221,365 was selected as the optimal grid. Two-phase flow phenomena, pressure drop calculations, shear stress on the walls, along with the rate of shear strain, and phase analysis were studied. Moreover, velocity changes from the wall to the center, causing a velocity gradient and shear strain rate, but at the center, no velocity variation (velocity gradient) was observed between the layers of the fluid. The precision of the simulation was investigated using three error parameters, such as mean square error, Nash-Sutcliffe efficiency, and RMSE-standard deviation of observation ratio. From the simulation, it was found that CFD analysis holds good agreement with experimental results. The uncertainty analysis demonstrated that our CFD model is helpful in predicting the rheological parameters very accurately. The study aids in identifying and predicting fluid flow phenomena inside horizontal straight pipes in a very effective way.

6.
Plant Commun ; 5(4): 100812, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38213028

RESUMEN

The Green Revolution of the mid-20th century transformed agriculture worldwide and has resulted in environmental challenges. A new approach, the Second Green Revolution, seeks to enhance agricultural productivity while minimizing negative environmental impacts. Plant microbiomes play critical roles in plant growth and stress responses, and understanding plant-microbiome interactions is essential for developing sustainable agricultural practices that meet food security and safety challenges, which are among the United Nations Sustainable Development Goals. This review provides a comprehensive exploration of key deterministic processes crucial for developing microbiome management strategies, including the host effect, the facilitator effect, and microbe-microbe interactions. A hierarchical framework for plant microbiome modulation is proposed to bridge the gap between basic research and agricultural applications. This framework emphasizes three levels of modulation: single-strain, synthetic community, and in situ microbiome modulation. Overall, rational management of plant microbiomes has wide-ranging applications in agriculture and can potentially be a core technology for the Second Green Revolution.


Asunto(s)
Microbiota , Plantas , Agricultura/métodos , Desarrollo de la Planta
7.
ACS Omega ; 9(2): 2783-2794, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250361

RESUMEN

The emergence of multidrug-resistant (MDR) bacteria has spurred the exploration of therapeutic nanomaterials such as ZnO nanoparticles. However, the inherent nonspecific toxicity of ZnO has posed a significant obstacle to their clinical utilization. In this research, we propose a novel approach to improve the selectivity of the toxicity of ZnO nanoparticles by impregnating them onto a less toxic clay mineral, Bentonite, resulting in ZB nanocomposites (ZB NCs). We hypothesize that these ZB NCs not only reduce toxicity toward both normal and carcinogenic cell lines but also retain the antibacterial properties of pure ZnO nanoparticles. To test this hypothesis, we synthesized ZB NCs by using a precipitation technique and confirmed their structural characteristics through X-ray diffraction and Raman spectroscopy. Electron microscopy revealed composite particles in the size range of 20-50 nm. The BET surface area of ZB NCs, within a relative pressure (P/P0) range of 0.407-0.985, was estimated to be 31.182 m2/g. Notably, 50 mg/mL ZB NCs demonstrated biocompatibility with HCT 116 and HEK 293 cell lines, supported by flow cytometry and fluorescence microscopy analysis. In vitro experiments further confirmed a remarkable five-log reduction in the population of MDR Escherichia coli in the presence of 50 mg/mL of ZB NCs. Antibacterial activity of the nanocomposites was also validated in the HEK293 and HCT 116 cell lines. These findings substantiate our hypothesis and underscore the effectiveness of ZB NCs against MDR E. coli while minimizing nonspecific toxicity toward healthy cells.

8.
Chemosphere ; 350: 141121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185423

RESUMEN

The use of lignocellulosic waste as an energy source for substituting fossil fuels has attracted lots of attention, and pyrolysis has been established as an effective technology for this purpose. However, the utilization of bio-oil derived from non-catalytic pyrolysis faces certain constraints, making it impractical for direct application in advanced sectors. This study has focused on overcoming these challenges by employing fractional condensation of pyrolytic vapors at distinct temperatures. The potential of five types of sawdust for producing high-quality bio-oil through pyrolysis conducted with a bench-scale bubbling fluidized bed reactor was investigated for the first time. The highest yield of bio-oil (61.94 wt%) was produced using sample 3 (damaged timber). Remarkably, phenolic compounds were majorly gathered in the 1st and 2nd condensers at temperatures of 200 °C and 150 °C, respectively, attributing to their higher boiling points. Whereas, carboxylic acid, ketones, and furans were mainly collected in the 3rd (-5 °C) and 4th (-20 °C) condensers, having high water content in the range of 35.33%-65.09%. The separation of acidic nature compounds such as acetic acid in the 3rd and 4th was evidenced by its low pH in the range of 4-5, while the pH of liquid collected in the 1st and 2nd condensers exhibited higher pH (6-7). The well-separated bio-oil derived from biomass pyrolysis facilitates its wide usage in various applications, proposing a unique approach toward carbon neutrality. In particular, achieving efficient separation of phenolic compounds in bio-oil is important, as these compounds can undergo further upgrading to generate hydrocarbons and diesel fuel.


Asunto(s)
Calor , Polifenoles , Pirólisis , Biocombustibles , Aceites de Plantas , Fenoles/análisis , Biomasa
9.
NPJ Biofilms Microbiomes ; 10(1): 6, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245564

RESUMEN

Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.


Asunto(s)
Colitis , Neoplasias Colorrectales , Microbioma Gastrointestinal , Animales , Ratones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/microbiología , Colitis/inducido químicamente , Escherichia coli/genética , Inflamación , Microambiente Tumoral
10.
Chemosphere ; 351: 141251, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253084

RESUMEN

This study presents the catalytic pyrolysis of microalgae, Chlorella vulgaris (C. vulgaris), using pure CH4 and H2-rich gas evolved from CH4 decomposition on three different HZSM-5 catalysts loaded with Zn, Ga, and Pt, aimed specifically at producing high-value mono-aromatics such as benzene, toluene, ethylbenzene, and xylene (BTEX). In comparison with that for the typical inert N2 environment, a pure CH4 environment increased the bio-oil yield from 32.4 wt% to 37.4 wt% probably due to hydrogen and methyl radical insertion in the bio-oil components. Furthermore, the addition of bimetals further increased bio-oil yield. For example, ZnPtHZ led to a bio-oil yield of 47.7 wt% in pure CH4. ZnGaHZ resulted in the maximum BTEX yield (6.68 wt%), which could be explained by CH4 activation, co-aromatization, and hydrodeoxygenation. The BTEX yield could be further increased to 7.62 wt% when pyrolysis was conducted in H2-rich gas evolved from CH4 decomposition over ZnGaHZ, as rates of aromatization and hydrodeoxygenation were relatively high under this condition. This study experimentally validated that the combination of ZnGaHZ and CH4 decomposition synergistically increases BTEX production using C. vulgaris.


Asunto(s)
Chlorella vulgaris , Microalgas , Aceites de Plantas , Polifenoles , Calor , Pirólisis , Tolueno , Benceno , Xilenos , Catálisis , Zinc , Biocombustibles
11.
Environ Res ; 241: 117544, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944689

RESUMEN

This study addresses the urgent need for practical solutions to industrial water contamination. Utilizing Algerian Bentonite as an adsorbent due to its regional prevalence, we focused on the efficiency of the Bentonite/Sodium dodecylbenzene sulfonate (SDBS) matrix in Methylene Blue (MB) removal. The zero-charge point and IR spectroscopy characterized the adsorbent. Acidic pH facilitated SDBS adsorption on Bentonite, achieving equilibrium in 30 min with a pseudo-second-order model. The UPAC and Freundlich model indicated a qmax of 25.97 mg/g. SDBS adsorption was exothermic at elevated temperatures. The loaded Bentonite exhibited excellent MB adsorption (pH 3-9) with PSOM kinetics. Maximum adsorption capacity using IUPAC and GILES-recommended isotherms was qmax = 23.54 mg/g. The loaded Bentonite's specific surface area was 70.01 m2/g, and the Sips model correlated well with experimental data (R2 = 0.98). This study highlights adsorption, mainly Bentonite/SDBS matrices, as a promising approach for remediating polluted areas by efficiently capturing and removing surfactants and dyes, contributing valuable insights to address industrial water contamination challenges.


Asunto(s)
Bentonita , Contaminantes Químicos del Agua , Bentonita/química , Azul de Metileno , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Adsorción , Cinética , Agua
12.
J Biomol Struct Dyn ; 42(7): 3307-3317, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37261798

RESUMEN

The promising quinazolinone-based pyridine derivatives (4a-j) were synthesized and subsequently tested for their antimycobacterial activities against the various drug-sensitive and drug-resistant Mycobacterium tuberculosis (Mtb) strains to combat infectious diseases and address growing concerns about the devastating effects of tuberculosis (TB). Utilizing 1H NMR, 13C NMR, and mass spectra, the structural and molecular confirmation of the synthesized compounds were deciphered. With minimum inhibitory concentration (MIC) values ranging from 0.31 to 19.13 µM, the results showed that compounds 4e and 4f showed promise anti-TB action against both drug-sensitive and drug-resistant TB strains. To study the cytotoxicity of synthesized molecules, normal Vero and mouse macrophage (RAW264.7) cell lines were utilized. Remarkably, it was revealed that at the highest concentration tested, none of the newly synthesized molecules were toxic to the Vero cell line. The binding patterns of the potent compounds 4b, 4e and 4f in the active site of the mycobacterial membrane protein Large 3 (MmpL3) protein are also revealed by molecular docking studies, which has contributed to the development of a structural rationale for Mtb inhibition. The physicochemical characteristics of the compounds were then predicted using theoretical calculations. Overall, the molecular docking results, physiochemical properties, and observed antimycobacterial activity all point to compound 4e with trifluoromethyl and compound 4f with nitro moiety as potential quinazolinone linked pyridine-based MmpL3 inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Simulación del Acoplamiento Molecular , Antituberculosos/farmacología , Antituberculosos/química , Tuberculosis/microbiología , Piridinas/farmacología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
13.
Chemosphere ; 349: 140781, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38006913

RESUMEN

Chemical recycling of plastics is a promising approach for effectively depolymerizing plastic waste into its constituent monomers, thereby contributing to the realization of a sustainable circular economy. Glycolysis, which converts polyethylene terephthalate (PET) into the monomer bis(2-hydroxyethyl) terephthalate (BHET), has emerged as a cost-effective and commercially viable chemical recycling process. However, glycolysis requires long reaction times and high energy consumption, limiting its industrialization. In this study, we develop an energy-efficient microwave-assisted deep eutectic solvent-catalyzed glycolysis method to degrade PET effectively and rapidly, resulting in a high BHET yield. This combined approach enables the quantitative degradation of PET within 9 min, achieving a high BHET yield of approximately 99% under optimal reaction conditions. Furthermore, the proposed approach has a low specific energy consumption (45 kJ/g) and minimizes waste generation. The thermal behavior of PET and its degradation mechanism are systematically investigated using scanning electron microscopy and density functional theory-based calculations. The results obtained suggest that the proposed straightforward, swift, and energy-efficient strategy has the potential to offer a sustainable solution to plastic waste management challenges and expedite the industrialization of chemical recycling.


Asunto(s)
Disolventes Eutécticos Profundos , Tereftalatos Polietilenos , Solventes , Microondas , Glucólisis , Catálisis , Plásticos
14.
Waste Manag ; 174: 411-419, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103351

RESUMEN

To achieve a sustainable and circular economy, developing effective plastic recycling methods is essential. Despite advances in the chemical recycling of plastic waste, modern industries require highly efficient and sustainable solutions to address environmental problems. In this study, we propose an efficient glycolysis strategy for post-consumer polyethylene terephthalate (PET) using deep eutectic solvents (DESs) to produce bis(2-hydroxyethyl) terephthalate (BHET) with high selectivity. Choline chloride (ChCl)- and urea-based DESs were synthesized using various metal salts and were tested for the glycolysis of PET waste; ChCl-Zn(OAc)2 exhibited the best performance. The DES-containing solvent system afforded a complete PET conversion, producing BHET at a high yield (91.6%) under optimal reaction conditions. The degradation mechanism of PET and its interaction with DESs were systematically investigated using density functional theory-based calculations. Furthermore, an intuitive machine learning model was developed to predict the PET conversion and BHET selectivity for different DES compositions. Our findings demonstrate that the DES-catalyzed glycolysis of post-consumer PET could enable the development of a sustainable chemical recycling process, providing insights to identify the new design of DESs for plastic decomposition.


Asunto(s)
Disolventes Eutécticos Profundos , Tereftalatos Polietilenos , Solventes/química , Tereftalatos Polietilenos/química , Glucólisis , Catálisis
15.
Environ Pollut ; 343: 123198, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128713

RESUMEN

Wax is a detrimental byproduct of plastic waste pyrolysis causing challenges upon its release into the environment owing to persistence and potential toxicity. In this study, the valorization of wax materials through conversion into BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) was achieved via catalytic pyrolysis using zeolite-based catalysts. The potential of two types of waxes, spent wax (SW), derived from the pyrolysis of plastic waste, and commercial paraffin wax (PW), for BTEX generation, was investigated. Using HZSM-5, higher yields of oil (54.9 wt%) and BTEX (18.2 wt%) were produced from the pyrolysis of SW compared to PW (32.3 and 14.1 wt%, respectively). This is due to the improved accessibility of lighter hydrocarbons in SW to Brønsted and Lewis acid sites in HZSM-5 micropores, promoting cracking, isomerization, cyclization, Diels-Alder, and dehydrogenation reactions. Further, the use of HZSM-5 resulted in significantly larger yields of oil and BTEX from SW pyrolysis compared to Hbeta and HY. This phenomenon is ascribed to the well-balanced distribution of Brønsted and Lewis acid sites and the identical geometric structure of HZSM-5 micropores and BTEX molecules. The addition of Ga to HZSM-5 further led to 2.24% and 28.30% enhancements in oil and BTEX yields, respectively, by adjusting the acidity of the catalyst through the introduction of new Lewis acid sites. The regeneration of the Ga/HZSM-5 catalyst by removing deposited coke on the spent catalyst under air partially recovered catalytic activity. This study not only offers an efficient transformation of undesirable wax into valuable fuels but also provides an environmentally promising solution, mitigating pollution, contributing to carbon capture, and promoting a healthier and more sustainable environment. It also suggests future research directions, including catalyst optimization and deactivation management, feedstock variability exploration, and techno-economic analyses for sustainable wax conversion into BTEX via catalytic pyrolysis.


Asunto(s)
Ácidos de Lewis , Pirólisis , Hidrocarburos , Tolueno , Catálisis , Ambiente , Calor
16.
ACS Omega ; 8(48): 45653-45667, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075834

RESUMEN

A dimer of Pd(II), [(bpy)Pd(µ-OH)2Pd(bpy)]2+, (complex 1) (where bpy = 2,2'-bipyridyl) has been synthesized at physiological pH (7.4) and characterized by electronic spectroscopy, electrospray ionization mass spectrometry (ESI-MS) spectroscopy, and Fourier transform infrared (FT-IR) analysis. Reaction kinetics of 1 with glycine (L1H), l-glutamic acid (L2H), and l-arginine (L3H) were investigated in an aqueous medium at pH of 7.4 and constant ionic strength via a spectrophotometer as a function of temperature and different concentrations of substrate-complex and ligand. The interactions were supported by two discrete successive steps, i.e., ligand-dependent and ligand-independent steps. The equilibrium constant of complex formation (outer-sphere association) and the rate constant during complex-substrate-ligand interaction were calculated. The Eyring equation was applied to evaluate activation factors (ΔH‡ and ΔS‡), and associative mechanisms of all reactions were proposed. Thermodynamic parameters (ΔH° and ΔS°) were also estimated from the standard plot of ln KE against 103/T. Spectroscopic titration of 1 at pH 7.4 in Tris-HCl buffer with calf thymus DNA, electronic emission titration with ethidium bromide (EtBr), antimicrobial activities, and an agarose gel electrophoresis run of 1 on pBR322 plasmid DNA have shown strong evidence of anticancer activity. Moreover, it has nontoxic water molecules as leaving groups.

17.
ACS Omega ; 8(45): 42164-42176, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024706

RESUMEN

The present study deals with sonochemically in situ synthesis of a novel functional catalyst using hydrogen exfoliated graphene (HEG) supported titanium dioxide (TiO2) and copper sulfate (CuSO4) doped with zinc oxide (ZnO) (abbreviated as Ti/Cu/Zn-HEG). The synthesis of the Ti/Cu/Zn-HEG nanocomposite (NCs) catalyst was confirmed through its characterizations by XRD, SEM-EDX, TEM, XPS, FTIR, and BET methods. It was assessed for catalytic conversion of a model aromatic compound para-nitrophenol (p-NP) in an aqueous solution. The p-NP is a nitroaromatic compound that has a toxic and mutagenic effect. Its removal from the water system is necessary to protect the environment and living being. The newly synthesized Ti/Cu/Zn-HEG NCs were applied for their higher stability and catalytic activity as a potential candidate for reducing p-NP in practice. The operating parameters, such as p-NP concentration, catalyst dosage, and operating time were optimized for 150 ppm, 400 ppm, and 10 min through response surface methodology (RSM) in Design-Expert software to obtain the maximum reduction p-NP up to 98.4% at its normal pH of 7.1 against the controls (using HEG, Ti/Cu-HEG, and Zn-HEG). Analysis of variance of the response suggested the regression equation to be significant for the process with a major impact on catalyst concentration and operating time. The model prediction data (from RSM) and experimental data were corroborated well as reflected through model's low relative error (RE < 0.10), high regression coefficient (R2 > 0.97), and Willmott d-index (dwill-index > 0.95) values.

18.
Environ Sci Pollut Res Int ; 30(57): 120472-120482, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37943433

RESUMEN

This study focused on evaluating the effectiveness of stabilizer/binding agents in immobilizing arsenic (As) in contaminated soil using both geochemical and geophysical monitoring methods. The effluent from the stabilizer/binding agent's application and control columns was analyzed, and the status of the columns was monitored using electrical resistivity (ER) and induced polarization (IP) methods. As stabilizers/binder, acid mine drainage sludge (AMDS) and steel slag (SS) were used, which delayed As and Ca leaching time and significantly reduced As leaching amount. Determination coefficients for As and Fe leaching exhibited elevated values (control column, R2 = 0.955; AMDS column, R2 = 0.908; and SS column, R2 = 0.833). A discernible decline in the concentration of leached Fe was accompanied by a corresponding reduction in IP. The determination coefficients correlating IP and Fe leaching remained substantial (control column, R2 = 0.768; AMDS column, R2 = 0.807; and SS column, R2 = 0.818). Such IP measurements manifest as instrumental tools in monitoring and assessing the retention capacity of applied stabilizer/binding agents in As-affected soils, thereby furnishing crucial data for the enduring surveillance of stabilization/solidification locales. This research posits a swift and continuous monitoring method for solidification/stabilization locales in situ.


Asunto(s)
Arsénico , Restauración y Remediación Ambiental , Contaminantes del Suelo , Arsénico/análisis , Contaminantes del Suelo/análisis , Contaminación Ambiental , Suelo , Aguas del Alcantarillado , Acero
19.
Redox Rep ; 28(1): 2269331, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010378

RESUMEN

Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias Encefálicas , Ferroptosis , Nanoestructuras , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Hierro , Peroxidación de Lípido
20.
Heliyon ; 9(9): e20300, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809937

RESUMEN

The in vitro anticancer efficacy of a new series of quinazoline-based thiazole derivatives was explored. Three cancer cell lines, MCF-7, HepG2, and A548, as well as the normal Vero cell lines, were tested employing the synthesized quinazoline-based thiazole compounds (4a-j). All of these compounds showed a moderate to significant cytotoxic impact that would have been noticeable and, in some cases, much more pronounced than the widely used drug erlotinib. For the MCF-7, HepG2, and A549 cell lines, respectively, the IC50 values of compound 4i were 2.86, 5.91, and 14.79 µM while those of compound 4j were 3.09, 6.87, and 17.92 µM. For their in vitro inhibitory effects against different EGFR kinases, such as the wild-type, L858R/T790 M, and L858R/T790 M/C797S, all the synthesized compounds were tested. The IC50 values for compound 4f against the wild-type, L858R/T790 M, and L858R/T790 M/C797S mutant EGFR kinases were 2.17, 2.81, and 3.62 nM, respectively. Investigations on the molecular docking of significant molecules indicated potential mechanisms of binding into the EGFR kinase active sites. By using in-silico simulations, compounds' putative drug-like qualities were verified. Finally, it has been shown that the newly synthesized compounds 4i and 4j are good candidates and beneficial for future design, optimization, and research to build more potent and selective EGFR kinase inhibitors with higher anticancer activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...