Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 472: 134445, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701727

RESUMEN

The prevalence of microplastic (MP) contamination has become a significant environmental concern due to its pervasive nature and persistent effects. While sediments are considered major repositories for MPs, information on their spatial distribution within these matrices is insufficient. This research examined both the horizontal and vertical presence of MPs in the sediments surrounding Lake Paldang in South Korea, alongside a comprehensive evaluation of the physicochemical characteristics of the samples obtained. The total content of MPs varied from 2.15 to 122.2 particles g-1. The average contents of MPs on surface sediments were 40.47, 34.14, 5.01, and 8.19 particles g-1 in north mainstream (NM), south mainstream (SM), tributary (TB), and Tributary catchment (TC) based on Sonae Island, Gyeongan stream, respectively. The most abundant MP types were polyethylene (PE), polytetrafluoroethylene (PTFE), and polypropylene (PP), accounting for more than 70% of the total MPs. The most abundant sizes of MPs were within 45-100 µm. At all sediment depths, polymers were distributed in the order PE, PP, and polyester in NM, SM, and TC, respectively, whereas PTFE mainly occurred in the surface layer. MPs distribution also exhibited seasonal variation as larger inflows and flow rates varied with season.

2.
J Hazard Mater ; 471: 134346, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38653139

RESUMEN

Soil, particularly in agricultural regions, has been recognized as one of the significant reservoirs for the emerging contaminant of MPs. Therefore, developing a rapid and efficient method is critical for their identification in soil. Here, we coupled HSI systems [i.e., VNIR (400-1000 nm), InGaAs (800-1600 nm), and MCT (1000-2500 nm)] with machine learning algorithms to distinguish soils spiked with white PE and PA (average size of 50 and 300 µm, respectively). The soil-normalized SWIR spectra unveiled significant spectral differences not only between control soil and pure MPs (i.e., PE 100% and PA 100%) but also among five soil-MPs mixtures (i.e., PE 1.6%, PE 6.9%, PA 5.0%, and PA 11.3%). This was primarily attributable to the 1st-3rd overtones and combination bands of C-H groups in MPs. Feature reductions visually demonstrated the separability of seven sample types by SWIR and the inseparability of five soil-MPs mixtures by VNIR. The detection models achieved higher accuracies using InGaAs (92-100%) and MCT (97-100%) compared to VNIR (44-87%), classifying 7 sample types. Our study indicated the feasibility of InGaAs and MCT HSI systems in detecting PE (as low as 1.6%) and PA (as low as 5.0%) in soil. SYNOPSIS: One of two SWIR HSI systems (i.e., InGaAs and MCT) with a sample imaging surface area of 3.6 mm² per grid cell was sufficient for detecting PE (as low as 1.6%) and PA (as low as 5.0%) in soils without the digestion and separation procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA