Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 357: 141984, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614392

RESUMEN

Benzisothiazolinone (BIT) and propyl paraben (PP) are preservatives in cleaning products; however, their toxicities are not well understood. In this study, zebrafish embryos were exposed to BIT, PP, and mixtures of both for 96 h to investigate the effects on growth hormone (GH), insulin-like growth factor-1 (IGF-1), and the transcription of 19 genes related to the GH/IGFs axis. Concentrations of BIT and PP were measured in the whole body of larvae. Zebrafish pairs were also exposed to BIT, PP, and mixtures for 21 d to evaluate the effects on sex hormones, histology in gonad, and transcription of 22 genes related to the hypothalamus-pituitary-gonad axis and vitellogenin. The mixtures had potentiation effects on development, reproduction, hormones, and gene transcripts than individual exposure. Larvae exposed to 229 µg L-1 BIT, 64.5 µg L-1 PP, and mixtures showed reduced growth. Decreased GH and IGF-1 levels were supported by gene regulation associated with the GH/IGFs axis. In larvae, reactive oxygen species, superoxide dismutase, catalase, and glutathione peroxidase levels were increased under all exposures. The gonadosomatic index in males and number of eggs decreased after mixture exposure. In females exposed to mixtures, the percentage of atretic follicle in ovary was significantly increased. The significant decrease in testosterone in males and significant decrease in 17ß-estradiol in females exposed to mixtures suggest anti-estrogenic and anti-androgenic potential. Thus, preservative mixtures in consumer products may be more toxic than the individual substances, which is important for managing the risks of mixing preservatives.


Asunto(s)
Parabenos , Conservadores Farmacéuticos , Pez Cebra , Animales , Femenino , Parabenos/toxicidad , Conservadores Farmacéuticos/toxicidad , Masculino , Factor I del Crecimiento Similar a la Insulina/metabolismo , Larva/efectos de los fármacos , Hormona del Crecimiento , Reproducción/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo
2.
Chemosphere ; 356: 141901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583538

RESUMEN

Following restrictions on polybrominated flame retardants, trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2-butoxyethyl) phosphate (TBEP) have been frequently used as plasticizers for fire-resistant plastics. This study investigated the neurodevelopmental effects, inflammatory response, and oxidative stress induction of three alkyl organophosphate flame retardants using a zebrafish embryo/larvae model. After exposure of zebrafish embryos to TMP, TEP, and TBEP (0, 0.02, 0.2, 2, 20, and 200 µg L-1) for 96 h, survival, development, swimming behavior, changes in acetylcholinesterase (AChE) activity, dopamine, tumor necrosis factor-alpha (TNF-α), interleukin (IL), reactive oxygen species (ROS), and antioxidant enzyme activities were observed. Concentrations of TMP, TEP, and TBEP were also measured in the whole body of exposed larvae. Our results showed that exposure to 200 µg L-1 TEP and ≥20 µg L-1 TBEP significantly reduced larval body length; however, TMP had no significant effects on developmental parameters up to 200 µg L-1. After 96 h of exposure to TBEP, total distance moved, mean velocity, AChE, and dopamine concentrations were significantly decreased. Exposure to TEP and TBEP decreased the expression of genes that regulate central nervous system development (e.g. gap43 and mbpa), whereas ROS, antioxidant enzymes, TNF-α, and IL-1ß concentrations were significantly increased. Notably, pretreatment with an antioxidant N-acetylcysteine reduced neurotoxicity and oxidative stress caused by TEP and TBEP. The results of this study demonstrated that exposure to TEP and TBEP causes oxidative stress and has adverse effects on the neurobehavioral and immune system of zebrafish, leading to hypoactivity and ultimately impairing development.


Asunto(s)
Retardadores de Llama , Larva , Organofosfatos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Pez Cebra , Animales , Retardadores de Llama/toxicidad , Estrés Oxidativo/efectos de los fármacos , Organofosfatos/toxicidad , Larva/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Inflamación/inducido químicamente , Acetilcolinesterasa/metabolismo , Compuestos Organofosforados/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
3.
Environ Pollut ; 341: 122947, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37977359

RESUMEN

In response to the restriction of phthalate plasticizers, acetyl tributyl citrate (ATBC) and acetyl triethyl citrate (ATEC) have been used in medical devices and food packaging. In the present study, the effects of ATBC and ATEC on the development, behavior, growth hormone (GH)-related endocrine system, neurotransmitters, and oxidative stress of zebrafish embryo or larvae were investigated. After exposure of zebrafish to ATBC and ATEC (0, 0.03, 0.3, 3, 30, and 300 µg/L) for 96 h, developmental toxicity, behavioral changes under light/dark condition, changes in hormones and genes involved in GH/insulin-like growth factors (IGFs) axis, changes in hormone, enzyme, and genes related to neurodevelopment, antioxidant enzymes activities were determined. Larvae exposed to 30 or 300 µg/L ATBC showed significant reductions in body length and moving distance and speed, whereas no significant effects on development and locomotor behavior were observed in larvae exposed to ATEC. The contents of GH and IGF-I were significantly reduced in larvae exposed to 3, 30, and 300 µg/L ATBC. Hormonal changes in fish exposed to ATBC are well supported by regulation of genes related to GH (gh1) and the activity of IGF-I (igf1). In fish exposed to ATBC, reduced acetylcholinesterase activity and down-regulation of genes related to the central nervous system development (ache, gap43, mbpa, and syn21) were observed. ATBC increased the production of reactive oxygen species and the levels of superoxide dismutase, catalase, and glutathione peroxidase. Notably, pre-treatment with the classic antioxidant N-acetylcysteine alleviated ATBC-induced GH-related endocrine disruption and neurotoxicity. Our observations showed that exposure to low levels of ATBC could disturb the regulatory systems of GH/IGFs axis and neurobehavior, ultimately leading to developmental inhibition and hypoactivity, and that increased oxidative stress plays a major role in these toxicities.


Asunto(s)
Plastificantes , Contaminantes Químicos del Agua , Animales , Plastificantes/metabolismo , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/farmacología , Pez Cebra/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Larva/metabolismo , Antioxidantes/metabolismo , Acetilcolinesterasa/metabolismo , Sistema Endocrino , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero
4.
ACS Appl Mater Interfaces ; 15(32): 38335-38345, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37539960

RESUMEN

Functional amyloid fibers are crucial in melanogenesis, but their roles are incompletely understood. In particular, their relationship with intrinsic spin characters of melanin remains unexplored. Here, we show that adding an amyloid scaffold greatly augments the spin density in synthetic melanin. It also brings about concurrent alterations in water dispersibility, bandgaps, and radical scavenging properties of the synthetic melanin, which facilitates its applications in solar water remediation and protection of human keratinocytes from UV irradiation. This work provides implications in the unrevealed role of functional amyloid in melanogenesis and in the origin of the superiority of natural melanin toward its synthetic variants in terms of the spin-related properties.


Asunto(s)
Amiloide , Amiloide/química , Radicales Libres/química , Melaninas/química , Rayos Ultravioleta , Técnicas Electroquímicas , Citoprotección
5.
Inorg Chem ; 61(42): 16887-16894, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36223637

RESUMEN

A charge mismatch between transition-metal-ion dopants and metal oxide nanoparticles (MO NPs) within an engineered complex engenders a significant number of oxygen vacancies (VO) on the surface of the MO NP construct. To elucidate in-depth the mechanism of this tendency, Co ions with different charge states (Co3+ and Co2+) were doped into ZnO NPs, and their atomic structural changes were correlated with their photocatalytic efficiency. We ascertained that the increase of the Zn-O bond distances was distinctly affected by Co3+-ion doping, and, subsequently, the number of VO was noticeably increased. We further investigated the mechanistic pathways of the photocatalytic oxidation of 2,5-hydroxymethylfurfural (HMF), which have been widely investigated as biomass derivatives because of their potential use as precursors for the synthesis of sustainable alternatives to petrochemical substances. To identify the reaction products in each oxidation step, selective oxidation products obtained from HMF in the presence of pristine ZnO NPs, Co3+- and Co2+-ion-doped ZnO NPs were evaluated. We confirmed that Co3+-ion-doped ZnO NPs can efficiently and selectively oxidize HMF with a good conversion rate (∼40%) by converting HMF to 2,5-furandicarboxylic acid (FDCA). The present study demonstrates the feasibility of improving the production efficiency of FDCA (an alternative energy material) by using enhanced photocatalytic MO NPs with the help of the charge mismatch between MO and metal-ion dopants.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Óxido de Zinc/química , Biomasa , Nanopartículas del Metal/química , Iones , Compuestos Orgánicos , Oxígeno
6.
Langmuir ; 38(22): 7077-7084, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35608255

RESUMEN

Short peptides designed to self-associate into amyloid fibers with metal ion-binding ability have been used to catalyze various types of chemical reactions. This manuscript demonstrates that one of these short-peptide fibers coordinated with CuII can exhibit melanosomal functions. The coordinated CuII and the amyloid structure itself are differentially functional in accelerating oxidative self-association of dopamine into melanin-like species and in regulating their material properties (e.g., water dispersion, morphology, and the density of unpaired electrons). The results have implications for the role of functional amyloids in melanin biosynthesis and for designing peptide-based supramolecular structures with various emergent functions.


Asunto(s)
Amiloide , Melaninas , Amiloide/química , Péptidos beta-Amiloides/química , Proteínas Amiloidogénicas/química , Melaninas/química , Péptidos/química
7.
Chem Commun (Camb) ; 58(29): 4623-4626, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35315854

RESUMEN

We report the synthesis of an end-on dinuclear Mn(II) azide complex with two bridging azide ligands that served as a precursor for the formation of an end-on bis(µ-hydroxido) dinuclear Mn(II,III) azide complex upon oxidation by organic peroxide or peracids. Combined experimental and theoretical studies on the reactivity of the end-on bis(µ-hydroxido) dinuclear Mn(II,III) azide complex suggest that the reaction with substrates having weak C-H bond and O-H bond dissociation energy occurred via a H-atom abstraction reaction in a concerted manner.


Asunto(s)
Azidas , Manganeso , Ligandos , Manganeso/química , Oxidación-Reducción
8.
Analyst ; 147(5): 841-850, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35119443

RESUMEN

Organic-inorganic hybrid perovskites are widely utilized in solar driven chemistry such as photocatalysis, hydrogen evolution, and oxygen reduction. Hybrid perovskites contain various components with high polarity and/or charge values, which undergo transformations due to ion exchange, photoinduced phase segregation, or ion migration. These variable characteristics make perovskites "soft materials". Meanwhile, optoelectronic devices often operate under electrochemical reactions in the presence of an electrical field. To examine the effect of this field on the material/photophysical properties of hybrid perovskites, hybrid FAPbBr3 (FA+: CH(NH2)2+) perovskite quantum dots (PQDs) were synthesized. In this study, we report the spectroelectrochemical investigation of the hybrid FAPbBr3 PQDs to understand the electrochemical stability and degradation process. We also found that the electrochemical condition played an important role in inducing defect-mediated oxidation/reduction reactions, changing the photophysical properties of hybrid PQDs, and causing their irreversible transformations to various lead halide plumbate complexes. These findings can help develop a strategy for enhancing the operational performance of PQDs for the solar driven chemistry.

9.
J Biol Inorg Chem ; 27(1): 37-47, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34714402

RESUMEN

Mono- and dinuclear zinc(II) complexes bearing bis(thiosemicarbazone) (bTSC) ligand were employed in the cleavage of phosphoester bonds. Comparative kinetic studies combined with theory suggested that the P-O bond cleavage is much accelerated by dinuclear zinc(II) complex in the presence of base. Based on the DFT-optimized structures of the proposed intermediates, it is plausible that (1) the removal of sulfur atoms of bTSC ligand from the zinc center provides two vacant sites for the binding of water (or hydroxide ion) and phosphoester and (2) the H-bonding between water (or hydroxide ion) and phosphoester, through several water molecules, may also assist the P-O bond cleavage and facilitate the nucleophilic attack. The kinetic and catalytic studies on the hydrolysis of phosphoester by dinuclear zinc complex showed a much-enhanced reactivity under basic reaction conditions, reaching over 95% conversion yield within 4 h. The currently presented compounds are arguably one of the faster synthetic Zn-based model performing phosphatase-like activity presented so far.


Asunto(s)
Tiosemicarbazonas , Zinc , Fosfatasa Alcalina/metabolismo , Hidrólisis , Cinética , Ligandos , Zinc/química
10.
J Inorg Biochem ; 223: 111524, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34218127

RESUMEN

Iodosylbenzene (PhIO) and its derivatives have attracted significant attention due to their various applications in organic synthesis and biomimetic studies. For example, PhIO has been extensively used for generating high-valent metal-oxo species that have been regarded as key intermediates in diverse oxidative reactions in biological system. However, recent studies have shown that metal-iodosylbenzene adduct, known as a precursor of metal-oxo species, plays an important role in transition metal-catalyzed oxidation reactions. During last few decades, extensive investigations have been conducted on the synthesis and reactivity studies of metal-iodosylbenzene adducts with early and middle transition metals including manganese, iron, cobalt. Nevertheless, metal-iodosylbenzene adducts with late transition metals such as nickel, copper and zinc, still remains elusive. Herein, we report a novel copper(II)-iodosylbenzene adduct bearing a linear ligand composed of two pyridine rings and an ethoxyethanol side-chain, [Cu(OIPh)(HN3O2)]2+ (1). The copper(II)-iodosylbenzene adduct was characterized by several spectroscopic methods including UV-vis spectroscopy, electrospray ionization mass spectrometer (ESI MS), and electron paramagnetic resonance (EPR) combined with theoretical calculations. Interestingly, 1 can carry out the catalytic sulfoxidation reaction. In sulfoxidation reaction with thioanisole under catalytic reaction condition, not only two-electron but also four-electron oxidized products such sulfoxide and sulfone were yielded, respectively. However, 1 was not an efficient oxidant towards CH bond activation and epoxidation reactions due to the steric hindrance created by the intramolecular H-bonding interaction between HN3O2 ligand and iodosylbenzene moiety.


Asunto(s)
Complejos de Coordinación/química , Yodobencenos/química , Catálisis , Complejos de Coordinación/síntesis química , Cobre/química , Ciclohexenos/química , Teoría Funcional de la Densidad , Yodobencenos/síntesis química , Modelos Químicos , Oxidación-Reducción , Estireno/química , Sulfuros/química
11.
RSC Adv ; 11(52): 33048-33054, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35493574

RESUMEN

Atractylenolide III (AT-III) is a pharmacologically effective phytochemical and is known to be oxygenated during systemic metabolism mainly by cytochrome P450 enzymes (CYP450s), iron-containing porphyrin-based oxygenases. In rat plasma samples, the oxygenated metabolite of orally ingested AT-III was determined using liquid chromatography/mass spectrometry and the oxygenated form of AT-III was maintained at higher levels than the original form of AT-III. In situ catalytic reactions using the iron(iv)-oxo porphyrin π-cation radical complex, [(tmp+˙)FeIV(O)]+, demonstrated that both H-atom abstraction and an oxygen rebound mechanism participated in the oxygenation process of AT-III. Density functional theory (DFT) confirmed the oxidative transformation occurred at the 4th and 10th carbon positions of AT-III. Co-treatment with acetaminophen had different effects between in vivo and in situ models of AT-III metabolism. AT-III was metabolized via an oxygenation process in the rat body, where CYP450 and other O2-activating metalloenzymes might participate in the metabolism. The present work provided the oxidative metabolism of AT-III using an in vivo model parallel with in situ biomimetic reaction models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...