Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(8): e3002227, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37531320

RESUMEN

Phosphoinositide-dependent kinase-1 (PDK1) is a master kinase of the protein A, G, and C (AGC) family kinases that play important roles in regulating cancer cell proliferation, survival, and metabolism. Besides phosphorylating/activating AKT at the cell membrane in a PI3K-dependent manner, PDK1 also exhibits constitutive activity on many other AGC kinases for tumor-promoting activity. In the latter case, PDK1 protein levels dominate its activity. We previously reported that MAPK4, an atypical MAPK, can PI3K-independently promote AKT activation and tumor growth. Here, using triple-negative breast cancer (TNBC) cell models, we demonstrate that MAPK4 can also enhance PDK1 protein synthesis, thus phosphorylate/activate PDK1 substrates beyond AKT. This new MAPK4-PDK1 axis alone lacks vigorous tumor-promoting activity but cooperates with our previously reported MAPK4-AKT axis to promote tumor growth. Besides enhancing resistance to PI3K blockade, MAPK4 also promotes cancer cell resistance to the more stringent PI3K and PDK1 co-blockade, a recently proposed therapeutic strategy. Currently, there is no MAPK4 inhibitor to treat MAPK4-high cancers. Based on the concerted action of MAPK4-AKT and MAPK4-PDK1 axis in promoting cancer, we predict and confirm that co-targeting AKT and PDK1 effectively represses MAPK4-induced cancer cell growth, suggesting a potential therapeutic strategy to treat MAPK4-high cancers.


Asunto(s)
Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Proteínas Quinasas Activadas por Mitógenos , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
2.
Stem Cells Transl Med ; 11(10): 1061-1071, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36124817

RESUMEN

Induced pluripotent stem cell-derived neural stem cells (iNSCs) are a multimodal stroke therapeutic that possess neuroprotective, regenerative, and cell replacement capabilities post-ischemia. However, long-term engraftment and efficacy of iNSCs is limited by the cytotoxic microenvironment post-stroke. Tanshinone IIA (Tan IIA) is a therapeutic that demonstrates anti-inflammatory and antioxidative effects in rodent ischemic stroke models and stroke patients. Therefore, pretreatment with Tan IIA may create a microenvironment that is more conducive to the long-term survival of iNSCs. In this study, we evaluated the potential of Tan IIA drug-loaded nanoparticles (Tan IIA-NPs) to improve iNSC engraftment and efficacy, thus potentially leading to enhanced cellular, tissue, and functional recovery in a translational pig ischemic stroke model. Twenty-two pigs underwent middle cerebral artery occlusion (MCAO) and were randomly assigned to a PBS + PBS, PBS + iNSC, or Tan IIA-NP + iNSC treatment group. Magnetic resonance imaging (MRI), modified Rankin Scale neurological evaluation, and immunohistochemistry were performed over a 12-week study period. Immunohistochemistry indicated pretreatment with Tan IIA-NPs increased iNSC survivability. Furthermore, Tan IIA-NPs increased iNSC neuronal differentiation and decreased iNSC reactive astrocyte differentiation. Tan IIA-NP + iNSC treatment enhanced endogenous neuroprotective and regenerative activities by decreasing the intracerebral cellular immune response, preserving endogenous neurons, and increasing neuroblast formation. MRI assessments revealed Tan IIA-NP + iNSC treatment reduced lesion volumes and midline shift. Tissue preservation and recovery corresponded with significant improvements in neurological recovery. This study demonstrated pretreatment with Tan IIA-NPs increased iNSC engraftment, enhanced cellular and tissue recovery, and improved neurological function in a translational pig stroke model.


Asunto(s)
Abietanos , Accidente Cerebrovascular Isquémico , Nanopartículas , Células-Madre Neurales , Animales , Accidente Cerebrovascular Isquémico/terapia , Porcinos , Abietanos/farmacología
3.
Brain Sci ; 12(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009173

RESUMEN

Dynamic changes in the oral microbiome have gained attention due to their potential diagnostic role in neurological diseases such as Alzheimer's disease and Parkinson's disease. Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, but no studies have examined the changes in oral microbiome during the acute stage of TBI using a clinically translational pig model. Crossbred piglets (4-5 weeks old, male) underwent either a controlled cortical impact (TBI, n = 6) or sham surgery (sham, n = 6). The oral microbiome parameters were quantified from the upper and lower gingiva, both buccal mucosa, and floor of the mouth pre-surgery and 1, 3, and 7 days post-surgery (PS) using the 16S rRNA gene. Faith's phylogenetic diversity was significantly lower in the TBI piglets at 7 days PS compared to those of sham, and beta diversity at 1, 3, and 7 days PS was significantly different between TBI and sham piglets. However, no significant changes in the taxonomic composition of the oral microbiome were observed following TBI compared to sham. Further studies are needed to investigate the potential diagnostic role of the oral microbiome during the chronic stage of TBI with a larger number of subjects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...