Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353017

RESUMEN

Herein, we report the synthesis of an interesting graphene quantum material called "graphene quantum pins (GQPs)". Morphological analysis revealed the interesting pin shape (width: ~10 nm, length: 50-100 nm) and spectral analysis elucidated the surface functional groups, structural features, energy levels, and photoluminescence properties (blue emission under 365 nm). The difference between the GQPs and graphene quantum dos (GQDs) isolated from the same reaction mixture as regards to their morphological, structural, and photoluminescence properties are also discussed along with the suggestion of a growth mechanism. Cytotoxicity and cellular responses including changes in biophysical and biomechanical properties were evaluated for possible biomedical applications of GQPs. The studies demonstrated the biocompatibility of GQPs even at a high concentration of 512 µg/mL. Our results suggest GQPs can be used as a potential bio-imaging agent with desired photoluminescence property and low cytotoxicity.

2.
Int J Nanomedicine ; 10 Spec Iss: 191-201, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26346562

RESUMEN

In order for nanoparticles (NPs) to be applied in the biomedical field, a thorough investigation of their interactions with biological systems is required. Although this is a growing area of research, there is a paucity of comprehensive data in cell-based studies. To address this, we analyzed the physicomechanical responses of human alveolar epithelial cells (A549), mouse fibroblasts (NIH3T3), and human bone marrow stromal cells (HS-5), following their interaction with silver nanoparticles (AgNPs). When compared with kanamycin, AgNPs exhibited moderate antibacterial activity. Cell viability ranged from ≤ 80% at a high AgNPs dose (40 µg/mL) to >95% at a low dose (10 µg/mL). We also used atomic force microscopy-coupled force spectroscopy to evaluate the biophysical and biomechanical properties of cells. This revealed that AgNPs treatment increased the surface roughness (P<0.001) and stiffness (P<0.001) of cells. Certain cellular changes are likely due to interaction of the AgNPs with the cell surface. The degree to which cellular morphology was altered directly proportional to the level of AgNP-induced cytotoxicity. Together, these data suggest that atomic force microscopy can be used as a potential tool to develop a biomechanics-based biomarker for the evaluation of NP-dependent cytotoxicity and cytopathology.


Asunto(s)
Antibacterianos , Supervivencia Celular/efectos de los fármacos , Nanopartículas del Metal , Plata , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/toxicidad , Bacterias/efectos de los fármacos , Línea Celular , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones , Células 3T3 NIH , Plata/química , Plata/farmacología , Plata/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...