Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(17): 21953-21964, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629409

RESUMEN

While photoelectrochemical (PEC) cells show promise for solar-driven green hydrogen production, exploration of various light-absorbing multilayer coatings has yet to significantly enhance their hydrogen generation efficiency. Acidic conditions can enhance the hydrogen evolution reaction (HER) kinetics and reduce overpotential losses. However, prolonged acidic exposure deactivates noble metal electrocatalysts, hindering their long-term stability. Progress requires addressing catalyst degradation to enable stable, efficient, and acidic PEC cells. Here, we proposed a process design based on the photoilluminated redox deposition (PRoD) approach. We use this to grow crystalline Rh2P nanoparticles (NPs) with a size of 5-10 on 30 nm-thick TiO2, without annealing. Atomically precise reaction control was performed by using several cyclic voltammetry cycles coincident with light irradiation to create a system with optimal catalytic activity. The optimized photocathode, composed of Rh2P/TiO2/Al-ZnO/Cu2O/Sb-Cu2O/ITO, achieved an excellent photocurrent density of 8.2 mA cm-2 at 0 VRHE and a durable water-splitting reaction in a strong acidic solution. Specifically, the Rh2P-loaded photocathode exhibited a 5.3-fold enhancement in mass activity compared to that utilizing just a Rh catalyst. Furthermore, in situ scanning transmission electron microscopy (STEM) was performed to observe the real-time growth process of Rh2P NPs in a liquid cell.

2.
J Am Chem Soc ; 146(3): 2267-2274, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207288

RESUMEN

Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm-2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.

3.
JACS Au ; 3(8): 2156-2165, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37654574

RESUMEN

Earth-abundant metals have recently been demonstrated as cheap catalyst alternatives to scarce noble metals for polyethylene hydrogenolysis. However, high methane selectivities hinder industrial feasibility. Herein, we demonstrate that low-temperature ex-situ reduction (350 °C) of coprecipitated nickel aluminate catalysts yields a methane selectivity of <5% at moderate polymer deconstruction (25-45%). A reduction temperature up to 550 °C increases the methane selectivity nearly sevenfold. Catalyst characterization (XRD, XAS, 27Al MAS NMR, H2 TPR, XPS, and CO-IR) elucidates the complex process of Ni nanoparticle formation, and air-free XPS directly after reaction reveals tetrahedrally coordinated Ni2+ cations promote methane production. Metallic and the specific cationic Ni appear responsible for hydrogenolysis of internal and terminal C-C scissions, respectively. A structure-methane selectivity relationship is discovered to guide the design of Ni-based catalysts with low methane generation. It paves the way for discovering other structure-property relations in plastics hydrogenolysis. These catalysts are also effective for polypropylene hydrogenolysis.

4.
Angew Chem Int Ed Engl ; 62(30): e202305251, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37235523

RESUMEN

Photothermal CO2 reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium-modified carbon-supported cobalt (K+ -Co-C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus-pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+ -Co-C catalyst shows a record-high photothermal CO2 hydrogenation rate of 758 mmol gcat -1 h-1 (2871 mmol gCo -1 h-1 ) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2 reduction reactions. We further demonstrate with this catalyst effective CO2 conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production.

5.
Adv Mater ; 34(45): e2206066, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36120806

RESUMEN

Unit-cell-thick MoS2 is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its tunable catalytic activity, which is determined based on the energetics and molecular interactions of different types of HER active sites. Kinetic responses of MoS2 active sites, including the reaction onset, diffusion of the electrolyte and H2 bubbles, and continuation of these processes, are important factors affecting the catalytic activity of MoS2 . Investigating these factors requires a direct real-time analysis of the HER occurring on spatially independent active sites. Herein, the H2 evolution and electrolyte diffusion on the surface of MoS2 are observed in real time by in situ electrochemical liquid-phase transmission electron microscopy (LPTEM). Time-dependent LPTEM observations reveal that different types of active sites are sequentially activated under the same conditions. Furthermore, the electrolyte flow to these sites is influenced by the reduction potential and site geometry, which affects the bubble detachment and overall HER activity of MoS2 .

6.
Science ; 375(6587): eabj3683, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35324302

RESUMEN

Yu et al. suggested calculating precisely the size ranges of the three parts of our figure 3A, adjusting the free-energy levels in figure 3B, and considering the shape effect in the first-principles calculation. The first and second suggestions raise strong concerns for misinterpretation and overinterpretation of our experiments. The original calculation is sufficient to support our claim about crystalline-to-disordered transformations.

7.
Adv Mater ; 33(43): e2102991, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34510585

RESUMEN

Cryogenic-electron microscopy (cryo-EM) is the preferred method to determine 3D structures of proteins and to study diverse material systems that intrinsically have radiation or air sensitivity. Current cryo-EM sample preparation methods provide limited control over the sample quality, which limits the efficiency and high throughput of 3D structure analysis. This is partly because it is difficult to control the thickness of the vitreous ice that embeds specimens, in the range of nanoscale, depending on the size and type of materials of interest. Thus, there is a need for fine regulation of the thickness of vitreous ice to deliver consistent high signal-to-noise ratios for low-contrast biological specimens. Herein, an advanced silicon-chip-based device is developed which has a regular array of micropatterned holes with a graphene oxide (GO) window on freestanding silicon nitride (Six Ny ). Accurately regulated depths of micropatterned holes enable precise control of vitreous ice thickness. Furthermore, GO window with affinity for biomolecules can facilitate concentration of the sample molecules at a higher level. Incorporation of micropatterned chips with a GO window enhances cryo-EM imaging for various nanoscale biological samples including human immunodeficiency viral particles, groEL tetradecamers, apoferritin octahedral, aldolase homotetramer complexes, and tau filaments, as well as inorganic materials.


Asunto(s)
Grafito
8.
Science ; 371(6528): 498-503, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33510024

RESUMEN

Nucleation in atomic crystallization remains poorly understood, despite advances in classical nucleation theory. The nucleation process has been described to involve a nonclassical mechanism that includes a spontaneous transition from disordered to crystalline states, but a detailed understanding of dynamics requires further investigation. In situ electron microscopy of heterogeneous nucleation of individual gold nanocrystals with millisecond temporal resolution shows that the early stage of atomic crystallization proceeds through dynamic structural fluctuations between disordered and crystalline states, rather than through a single irreversible transition. Our experimental and theoretical analyses support the idea that structural fluctuations originate from size-dependent thermodynamic stability of the two states in atomic clusters. These findings, based on dynamics in a real atomic system, reshape and improve our understanding of nucleation mechanisms in atomic crystallization.

9.
Nano Lett ; 20(12): 8704-8710, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33186041

RESUMEN

The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.


Asunto(s)
Grafito , Nanopartículas del Metal , Oro , Ligandos , Microscopía Electrónica de Transmisión
10.
Adv Mater ; 32(39): e2002889, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32844520

RESUMEN

Liquid-phase transmission electron microscopy (TEM) offers a real-time microscopic observation of the nanometer scale for understanding the underlying mechanisms of the growth, etching, and interactions of colloidal nanoparticles. Despite such unique capability and potential application in diverse fields of analytical chemistry, liquid-phase TEM studies rely on information obtained from the limited number of observed events. In this work, a novel liquid cell with a large-scale array of highly ordered nanochambers is constructed by sandwiching an anodic aluminum oxide membrane between graphene sheets. TEM analysis of colloidal gold nanoparticles dispersed in the liquid is conducted, employing the fabricated nanochamber array, to demonstrate the potential of the nanochamber array in quantitative liquid-phase TEM. The independent TEM observations in the multiple nanochambers confirm that the monomer attachment and coalescence processes universally govern the overall growth of nanoparticles, although individual nanoparticles follow different growth trajectories.

11.
Sensors (Basel) ; 20(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069918

RESUMEN

When the low power wide area network (LPWAN) was developed for the internet of things (IoT), it attracted significant attention. LoRa, which is one of the LPWAN technologies, provides low-power and long-range wireless communication using a frequency band under 1 GHz. A long-range wide area network (LoRaWAN) provides a simple star topology network that is not scalable; it supports multi-data rates by adjusting the spreading factor, code rate, and bandwidth. This paper proposes an adaptive spreading factor selection scheme for corresponding spreading factors (SFs) between a transmitter and receiver. The scheme enables the maximum throughput and minimum network cost, using cheap single channel LoRa modules. It provides iterative SF inspection and an SF selection algorithm that allows each link to communicate at independent data rates. We implemented a multi-hop LoRa network and evaluated the performance of experiments in various network topologies. The adaptive spreading factor selection (ASFS) scheme showed outstanding end-to-end throughput, peaking at three times the performance of standalone modems. We expect the ASFS scheme will be a suitable technology for applications requiring high throughput on a multi-hop network.

12.
J Am Chem Soc ; 141(2): 763-768, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30608684

RESUMEN

Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. Here, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. Our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.

13.
Nano Lett ; 18(10): 6214-6221, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30247914

RESUMEN

The van der Waals epitaxy of functional materials provides an interesting and efficient way to manipulate the electrical properties of various hybrid two-dimensional (2D) systems. Here we show the controlled epitaxial assembly of semiconducting one-dimensional (1D) atomic chains, AuCN, on graphene and investigate the electrical properties of 1D/2D van der Waals heterostructures. AuCN nanowire assembly is tuned by different growth conditions, although the epitaxial alignment between AuCN chains and graphene remains unchanged. The switching of the preferred nanowire growth axis indicates that diffusion kinetics affects the nanowire formation process. Semiconducting AuCN chains endow the 1D/2D hybrid system with a strong responsivity to photons with an energy above 2.7 eV, which is consistent with the bandgap of AuCN. A large UV response (responsivity ∼104 A/W) was observed under illumination using 3.1 eV (400 nm) photons. Our study clearly demonstrates that 1D chain-structured semiconductors can play a crucial role as a component in multifunctional van der Waals heterostructures.

14.
Appl Opt ; 56(24): 6720-6727, 2017 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-29048009

RESUMEN

We report on a bidirectional free-space optical system that is capable of automatic connection and tracking of an optical link between two nodes. A piezoelectric micro-electro-mechanical systems (MEMS) optical scanner is used to steer a laser beam of two wavelengths superposed to visually present a communication zone, to search for the position of the remote node by means of the retro-reflector optics, and to transmit the data between the nodes. A feedback system is developed to control the MEMS scanner to dynamically establish the optical link within a 10-ms transition time and to keep track of the moving node.

15.
Bioelectromagnetics ; 35(2): 100-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24123080

RESUMEN

To evaluate duration- and dose-dependent effects of continuous exposure to a 60 Hz magnetic field (MF) on the testes in mice, BALB/c male mice were exposed to a 60 Hz MF at 100 µT for 24 h a day for 2, 4, 6, or 8 weeks, and at 2, 20, or 200 µT for 24 h a day for 8 weeks. Any exposures to MF did not significantly affect body or testicular masses. However, the apoptotic cells among testicular germ cells were increased duration-dependent at exposures of 100 µT for 6 and 8 weeks and dose-dependent at exposures of 20 and 200 µT for 8 weeks. The number of sperm in epididymis and the diameter of seminiferous tubule decreased in mice exposed to 100 and 200 µT for 8 weeks, respectively. To induce the apoptosis of testicular germ cell in mice, the minimum dose is 20 µT at continuous exposure to a 60 Hz MF for 8 weeks and the minimum duration is 6 weeks at continuous exposure of 100 µT. Taken together, these results suggest that continuous exposure to a 60 Hz MF might affect, duration- and dose-dependent biological processes including apoptotic cell death and spermatogenesis in the male reproductive system of mice.


Asunto(s)
Apoptosis , Campos Magnéticos , Espermatozoides/citología , Testículo/citología , Animales , Relación Dosis-Respuesta en la Radiación , Epidídimo/citología , Masculino , Ratones , Ratones Endogámicos BALB C , Recuento de Espermatozoides , Factores de Tiempo
16.
J Korean Med Sci ; 28(5): 672-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23678257

RESUMEN

Diagnosis of scrub typhus is difficult because its symptoms are very similar to other acute febrile illnesses, such as leptospirosis, murine typhus, and other viral hemorrhagic fevers. To differentiate scrub typhus from other acute febrile diseases, a rapid and reliable serological diagnosis is important. We have developed a chimeric recombinant antigen cr56 and two other recombinant antigens, r21 and kr56, from various serotypes of Orientia tsutsugamushi. They were tested for the detection of antibodies against O. tsutsugamushi in the patient's serum samples using enzyme-linked immunosorbent assay (ELISA) and dot-blot analyses. As of conventional immunofluorescence assay (IFA), when the mixture of these three recombinant antigens was used, both sensitivity and specificity of the recombinant antigens were increased up to 98% in IgM and IgG at ELISA and dot blotting. Additionally, both sensitivity and specificity by detection of IgM and IgG antibodies at rapid diagnostic test (RDT), using the mixture of three antigens and gold conjugated antibodies, were 99%. Our results suggest the use of mixture of these recombinant antigen proteins in ELISA or RDT is suitable as a diagnostic test for scrub typhus.


Asunto(s)
Orientia tsutsugamushi/metabolismo , Tifus por Ácaros/diagnóstico , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/química , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente Indirecta , Oro/química , Humanos , Inmunoensayo , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Orientia tsutsugamushi/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Sensibilidad y Especificidad , Serotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...