Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39091753

RESUMEN

Xist, a pivotal player in X chromosome inactivation (XCI), has long been perceived as a cis-acting long noncoding RNA that binds exclusively to the inactive X chromosome (Xi). However, Xist's ability to diffuse under select circumstances has also been documented, leading us to suspect that Xist RNA may have targets and functions beyond the Xi. Here, using female mouse embryonic stem cells (ES) and mouse embryonic fibroblasts (MEF) as models, we demonstrate that Xist RNA indeed can localize beyond the Xi. However, its binding is limited to ~100 genes in cells undergoing XCI (ES cells) and in post-XCI cells (MEFs). The target genes are diverse in function but are unified by their active chromatin status. Xist binds discretely to promoters of target genes in neighborhoods relatively depleted for Polycomb marks, contrasting with the broad, Polycomb-enriched domains reported for human XIST RNA. We find that Xist binding is associated with down-modulation of autosomal gene expression. However, unlike on the Xi, Xist binding does not lead to full silencing and also does not spread beyond the target gene. Over-expressing Xist in transgenic ES cells similarly lead to autosomal gene suppression, while deleting Xist's Repeat B motif reduces autosomal binding and perturbs autosomal down-regulation. Furthermore, treating female ES cells with the Xist inhibitor, X1, leads to loss of autosomal suppression. Altogether, our findings reveal Xist targets ~100 genes beyond the Xi, identify Repeat B as a crucial domain for its in-trans function in mice, and indicate that autosomal targeting can be disrupted by the X1 small molecule inhibitor.

2.
Proc Natl Acad Sci U S A ; 114(40): 10654-10659, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923964

RESUMEN

X chromosome inactivation is an epigenetic dosage compensation mechanism in female mammals driven by the long noncoding RNA, Xist. Although recent genomic and proteomic approaches have provided a more global view of Xist's function, how Xist RNA localizes to the inactive X chromosome (Xi) and spreads in cis remains unclear. Here, we report that the CDKN1-interacting zinc finger protein CIZ1 is critical for localization of Xist RNA to the Xi chromosome territory. Stochastic optical reconstruction microscopy (STORM) shows a tight association of CIZ1 with Xist RNA at the single-molecule level. CIZ1 interacts with a specific region within Xist exon 7-namely, the highly repetitive Repeat E motif. Using genetic analysis, we show that loss of CIZ1 or deletion of Repeat E in female cells phenocopies one another in causing Xist RNA to delocalize from the Xi and disperse into the nucleoplasm. Interestingly, this interaction is exquisitely sensitive to CIZ1 levels, as overexpression of CIZ1 likewise results in Xist delocalization. As a consequence, this delocalization is accompanied by a decrease in H3K27me3 on the Xi. Our data reveal that CIZ1 plays a major role in ensuring stable association of Xist RNA within the Xi territory.


Asunto(s)
Cromosomas de los Mamíferos , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares , ARN Largo no Codificante , Secuencias Repetitivas de Ácidos Nucleicos , Cromosoma X , Animales , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Ratones , Células Madre Embrionarias de Ratones/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleótidos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo
3.
PLoS One ; 12(8): e0182568, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28796844

RESUMEN

In mammals, monoallelic gene expression can result from X-chromosome inactivation, genomic imprinting, and random monoallelic expression (RMAE). Epigenetic regulation of RMAE is not fully understood. Here we analyze allelic imbalance in chromatin state of autosomal genes using ChIP-seq in a clonal cell line. We identify approximately 3.7% of autosomal genes that show significant differences between chromatin states of two alleles. Allelic regulation is represented among several functional gene categories including histones, chromatin modifiers, and multiple early developmental regulators. Most cases of allelic skew are produced by quantitative differences between two allelic chromatic states that belong to the same gross type (active, silent, or bivalent). Combinations of allelic states of different types are possible but less frequent. When different chromatin marks are skewed on the same gene, their skew is coordinated as a result of quantitative relationships between these marks on each individual allele. Finally, combination of allele-specific densities of chromatin marks is a quantitative predictor of allelic skew in gene expression.


Asunto(s)
Desequilibrio Alélico , Cromatina/genética , Alelos , Animales , Línea Celular , Epigénesis Genética , Femenino , Fibroblastos/metabolismo , Expresión Génica , Genoma , Impresión Genómica , Masculino , Ratones , Ratones de la Cepa 129
4.
Science ; 356(6343)2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28619887

RESUMEN

Chen et al (Reports, 28 October 2016, p. 468) proposed that an interaction between Xist RNA and Lamin B receptor (LBR) is necessary and sufficient for Xist spreading during X-chromosome inactivation. We reanalyzed their data and found that reported genotypes of mutants are not supported by the sequencing data. These inconsistencies preclude assessment of the role of LBR in Xist spreading.


Asunto(s)
Silenciador del Gen , Lámina Nuclear , ARN Largo no Codificante/genética , ARN no Traducido/genética , Cromosoma X , Inactivación del Cromosoma X
5.
Mol Cell ; 57(2): 361-75, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25578877

RESUMEN

CTCF is a master regulator that plays important roles in genome architecture and gene expression. How CTCF is recruited in a locus-specific manner is not fully understood. Evidence from epigenetic processes, such as X chromosome inactivation (XCI), indicates that CTCF associates functionally with RNA. Using genome-wide approaches to investigate the relationship between its RNA interactome and epigenomic landscape, here we report that CTCF binds thousands of transcripts in mouse embryonic stem cells, many in close proximity to CTCF's genomic binding sites. CTCF is a specific and high-affinity RNA-binding protein (Kd < 1 nM). During XCI, CTCF differentially binds the active and inactive X chromosomes and interacts directly with Tsix, Xite, and Xist RNAs. Tsix and Xite RNAs target CTCF to the X inactivation center, thereby inducing homologous X chromosome pairing. Our work elucidates one mechanism by which CTCF is recruited in a locus-specific manner and implicates CTCF-RNA interactions in long-range chromosomal interactions.


Asunto(s)
ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Cromosoma X/genética , Animales , Factor de Unión a CCCTC , Células Cultivadas , Emparejamiento Cromosómico , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Sitios Genéticos , Ratones , Unión Proteica
6.
Cell ; 159(4): 869-83, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417162

RESUMEN

X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X , Animales , ADN Helicasas/aislamiento & purificación , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Proteínas Nucleares/aislamiento & purificación , Proteína Nuclear Ligada al Cromosoma X
8.
Cell ; 153(7): 1537-51, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23791181

RESUMEN

In mammals, dosage compensation between XX and XY individuals occurs through X chromosome inactivation (XCI). The noncoding Xist RNA is expressed and initiates XCI only when more than one X chromosome is present. Current models invoke a dependency on the X-to-autosome ratio (X:A), but molecular factors remain poorly defined. Here, we demonstrate that molecular titration between an X-encoded RNA and an autosomally encoded protein dictates Xist induction. In pre-XCI cells, CTCF protein represses Xist transcription. At the onset of XCI, Jpx RNA is upregulated, binds CTCF, and extricates CTCF from one Xist allele. We demonstrate that CTCF is an RNA-binding protein and is titrated away from the Xist promoter by Jpx RNA. Thus, Jpx activates Xist by evicting CTCF. The functional antagonism via molecular titration reveals a role for long noncoding RNA in epigenetic regulation.


Asunto(s)
ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Regulación hacia Arriba , Inactivación del Cromosoma X , Animales , Factor de Unión a CCCTC , Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Cromosoma X/metabolismo
9.
Genome Res ; 22(10): 1864-76, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22948768

RESUMEN

X chromosome inactivation (XCI) achieves dosage balance in mammals by repressing one of two X chromosomes in females. During XCI, the long noncoding Xist RNA and Polycomb proteins spread along the inactive X (Xi) to initiate chromosome-wide silencing. Although inactivation is known to commence at the X-inactivation center (Xic), how it propagates remains unknown. Here, we examine allele-specific binding of Polycomb repressive complex 2 (PRC2) and chromatin composition during XCI and generate a chromosome-wide profile of Xi and Xa (active X) at nucleosome-resolution. Initially, Polycomb proteins are localized to ∼150 strong sites along the X and concentrated predominantly within bivalent domains coinciding with CpG islands ("canonical sites"). As XCI proceeds, ∼4000 noncanonical sites are recruited, most of which are intergenic, nonbivalent, and lack CpG islands. Polycomb sites are depleted of LINE repeats but enriched for SINEs and simple repeats. Noncanonical sites cluster around the ∼150 strong sites, and their H3K27me3 levels reflect a graded concentration originating from strong sites. This suggests that PRC2 and H3K27 methylation spread along a gradient unique to XCI. We propose that XCI is governed by a hierarchy of defined Polycomb stations that spread H3K27 methylation in cis.


Asunto(s)
Proteínas del Grupo Polycomb/metabolismo , Inactivación del Cromosoma X , Alelos , Animales , Sitios de Unión , Línea Celular , Inmunoprecipitación de Cromatina , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/química , Dominios y Motivos de Interacción de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos , Cromosoma X
10.
Curr Opin Genet Dev ; 22(2): 62-71, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22424802

RESUMEN

Equalization of X linked gene expression is necessary in mammalian cells due to the presence of two X chromosomes in females and one in males. To achieve this, all female cells inactivate one of the two X chromosomes during development. This process, termed X chromosome inactivation (XCI), is a quintessential epigenetic phenomenon and involves a complex interplay between noncoding RNAs and protein factors. Progress in this area of study has consequently resulted in new approaches to study epigenetics and regulatory RNA function. Here we will discuss recent developments in the field that have advanced our understanding of XCI and its regulatory mechanisms.


Asunto(s)
Inactivación del Cromosoma X , Animales , Daño del ADN , Dosificación de Gen , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , ARN no Traducido/genética
11.
Cell ; 146(1): 119-33, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21729784

RESUMEN

The long noncoding Xist RNA inactivates one X chromosome in the female mammal. Current models posit that Xist induces silencing as it spreads along X and recruits Polycomb complexes. However, the mechanisms for Xist loading and spreading are currently unknown. Here, we define the nucleation center for Xist RNA and show that YY1 docks Xist particles onto the X chromosome. YY1 is a "bivalent" protein, capable of binding both RNA and DNA through different sequence motifs. Xist's exclusive attachment to the inactive X is determined by an epigenetically regulated trio of YY1 sites as well as allelic origin. Specific YY1-to-RNA and YY1-to-DNA contacts are required to load Xist particles onto X. YY1 interacts with Xist RNA through Repeat C. We propose that YY1 acts as adaptor between regulatory RNA and chromatin targets.


Asunto(s)
ARN no Traducido/metabolismo , Inactivación del Cromosoma X , Cromosoma X/genética , Factor de Transcripción YY1/metabolismo , Animales , Femenino , Ratones , Proteínas del Grupo Polycomb , ARN Largo no Codificante , ARN no Traducido/química , Proteínas Represoras/metabolismo , Transgenes
12.
Semin Cell Dev Biol ; 22(4): 336-42, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21376830

RESUMEN

Acquisition of the pluripotent state coincides with epigenetic reprogramming of the X-chromosome. Female embryonic stem cells are characterized by the presence of two active X-chromosomes, cell differentiation by inactivation of one of the two Xs, and induced pluripotent stem cells by reactivation of the inactivated X-chromosome in the originating somatic cell. The tight linkage between X- and stem cell reprogramming occurs through pluripotency factors acting on noncoding genes of the X-inactivation center. This review article will discuss the latest advances in our understanding at the molecular level. Mouse embryonic stem cells provide a standard for defining the pluripotent ground state, which is characterized by low levels of the noncoding Xist RNA and the absence of heterochromatin marks on the X-chromosome. Human pluripotent stem cells, however, exhibit X-chromosome epigenetic instability that may have implications for their use in regenerative medicine. XIST RNA and heterochromatin marks on the X-chromosome indicate whether human pluripotent stem cells are developmentally 'naïve', with characteristics of the pluripotent ground state. X-chromosome status and determination thereof via noncoding RNA expression thus provide valuable benchmarks of the epigenetic quality of pluripotent stem cells, an important consideration given their enormous potential for stem cell therapy.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , ARN no Traducido/metabolismo , Cromosoma X/metabolismo , Animales , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Humanos , Ratones , ARN no Traducido/genética , Inactivación del Cromosoma X
13.
Biochem Biophys Res Commun ; 365(3): 575-82, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-17997977

RESUMEN

In model organisms, MCM10 is required for forming the pre-initiation complex for initiation of chromosome replication and is involved in the elongation step. To investigate the role of MCM10 in human chromosome replication, we used small interfering RNA (siRNA) in MCM10-knockdown experiments and found that knockdown accumulated S and G2 phase cells. The chromosome replication of MCM10-knockdown cells was slowed during early and mid S phases, although Cdc45, Polalpha, and PCNA proteins were loaded onto the chromatin, and was aberrant during late S phase. Our results indicate that MCM10 is essential for the efficient elongation step of chromosome replication.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromosomas Humanos/genética , Replicación del ADN/genética , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , ADN Polimerasa I/análisis , ADN Polimerasa I/metabolismo , Replicación del ADN/efectos de los fármacos , Fase G2/efectos de los fármacos , Fase G2/genética , Células HeLa , Humanos , Proteínas de Mantenimiento de Minicromosoma , Antígeno Nuclear de Célula en Proliferación/análisis , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Interferente Pequeño/farmacología , Fase S/efectos de los fármacos , Fase S/genética
14.
J Biol Chem ; 282(20): 14882-90, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17293600

RESUMEN

Human TopBP1 with eight BRCA1 C terminus domains has been mainly reported to be involved in DNA damage response pathways. Here we show that TopBP1 is also required for G(1) to S progression in a normal cell cycle. TopBP1 deficiency inhibited cells from entering S phase by up-regulating p21 and p27, resulting in down-regulation of cyclin E/CDK2. Although co-depletion of p21 and p27 with TopBP1 restored the cyclin E/CDK2 kinase activity, however, cells remained arrested at the G(1)/S boundary, showing defective chromatin-loading of replication components. Based on these results, we suggest a dual role of TopBP1 necessary for the G(1)/S transition: one for activating cyclin E/CDK2 kinase and the other for loading replication components onto chromatin to initiate DNA synthesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/biosíntesis , Fase G1/fisiología , Proteínas Nucleares/metabolismo , Fase S/fisiología , Línea Celular , Cromatina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas p21 Activadas
15.
Proc Natl Acad Sci U S A ; 102(18): 6419-24, 2005 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-15845769

RESUMEN

Chromosomes in human cancer cells are expected to initiate replication from predictably localized origins, firing reproducibly at discrete times in S phase. Replication products obtained from HeLa cells at different stages of S phase were hybridized to cDNA and genome tiling oligonucleotide microarrays to determine the temporal profile of replication of human chromosomes on a genome-wide scale. About 1,000 genes and chromosomal segments were identified as sites containing efficient origins that fire reproducibly. Early replication was correlated with high gene density. An acute transition of gene density from early to late replicating areas suggests that discrete chromatin states dictate early versus late replication. Surprisingly, at least 60% of the interrogated chromosomal segments replicate equally in all quarters of S phase, suggesting that large stretches of chromosomes are replicated by inefficient, variably located and asynchronous origins and forks, producing a pan-S phase pattern of replication. Thus, at least for aneuploid cancer cells, a typical discrete time of replication in S phase is not seen for large segments of the chromosomes.


Asunto(s)
Cromosomas Humanos/genética , Replicación del ADN/fisiología , Origen de Réplica/genética , Fase S/genética , Análisis por Conglomerados , Replicación del ADN/genética , ADN Complementario/genética , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Factores de Tiempo
16.
Mol Cell ; 11(4): 997-1008, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12718885

RESUMEN

Eukaryotic cells control the initiation of DNA replication so that origins that have fired once in S phase do not fire a second time within the same cell cycle. Failure to exert this control leads to genetic instability. Here we investigate how rereplication is prevented in normal mammalian cells and how these mechanisms might be overcome during tumor progression. Overexpression of the replication initiation factors Cdt1 and Cdc6 along with cyclin A-cdk2 promotes rereplication in human cancer cells with inactive p53 but not in cells with functional p53. A subset of origins distributed throughout the genome refire within 2-4 hr of the first cycle of replication. Induction of rereplication activates p53 through the ATM/ATR/Chk2 DNA damage checkpoint pathways. p53 inhibits rereplication through the induction of the cdk2 inhibitor p21. Therefore, a p53-dependent checkpoint pathway is activated to suppress rereplication and promote genetic stability.


Asunto(s)
Quinasas CDC2-CDC28 , Proteínas de Ciclo Celular/genética , División Celular/genética , Transformación Celular Neoplásica/genética , Replicación del ADN/genética , Células Eucariotas/metabolismo , Genes cdc/fisiología , Proteína p53 Supresora de Tumor/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Quinasa de Punto de Control 2 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Ciclina A/genética , Ciclina A/metabolismo , Ciclina A/farmacología , Quinasa 2 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA