Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
Br J Cancer ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729997

RESUMEN

BACKGROUND: We investigated the role of tumor cell-intrinsic PD-L1 signaling in the epithelial-mesenchymal transition (EMT) in non-small-cell lung cancer (NSCLC) and the role of EMT as a predictive biomarker for immune checkpoint inhibitor (ICI) therapy. METHODS: PD-L1-overexpressing or PD-L1-knockdown NSCLC cells underwent RNA-seq and EMT phenotype assessment. Mouse lung cancer LLC cells were injected into nude mice. Two cohorts of patients with NSCLC undergoing ICI therapy were analyzed. RESULTS: RNA-seq showed that EMT pathways were enriched in PD-L1-high NSCLC cells. EMT was enhanced by PD-L1 in NSCLC cells, which was mediated by transforming growth factor-ß (TGFß). PD-L1 promoted the activation of p38-MAPK by binding to and inhibiting the protein phosphatase PPM1B, thereby increasing the TGFß production. Tumor growth and metastasis increased in nude mice injected with PD-L1-overexpressing LLC cells. In the ICI cohort, EMT signature was higher in patients with progressive disease than in those with responses, and EMT was significantly associated with poor survival in PD-L1-high NSCLC. In PD-L1-high NSCLC, EMT was associated with increased M2-macrophage and regulatory T-cell infiltrations and decreased cytotoxic T-cell infiltration. CONCLUSIONS: Tumor cell-intrinsic PD-L1 function contributes to NSCLC progression by promoting EMT. EMT may predict an unfavorable outcome after ICI therapy in PD-L1-high NSCLC.

2.
Orthop J Sports Med ; 12(4): 23259671241246768, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665386

RESUMEN

Background: Various arthroscopic rotator cuff repair techniques are being used for the treatment of rotator cuff tears with the development of surgical instruments. However, retears after repair are not completely avoidable, and efforts to reduce retears remain a challenge. Purpose/Hypothesis: To introduce a new repair technique, the double-row modified Mason-Allen technique with a single knot, and to compare clinical outcomes and retear rates with the single-row modified Mason-Allen technique. It was hypothesized that this new technique would have a better clinical outcome and significantly lower retear rate than the single-row modified Mason-Allen technique. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 110 patients with small- to medium-sized (<1.5 cm) full-thickness supraspinatus tears were enrolled into 2 groups, with 65 patients receiving the single-row modified Mason-Allen technique (group A) and 45 patients receiving the double-row modified Mason-Allen technique with a single knot (group B). The clinical and functional outcomes were evaluated using the American Shoulder and Elbow Surgeons (ASES) score; Disabilities of the Arm, Shoulder and Hand (DASH) score; and visual analog scale (VAS) for pain and satisfaction scores. All patients enrolled in this study were monitored for a minimum of 24 months. Magnetic resonance imaging was performed to analyze the integrity of tendons and retear at 6 months after surgery. Results: No statistically significant differences between the 2 groups were found regarding the VAS for pain, ASES, and DASH scores. However, retear was found in 9 patients (13.8%) in group A and 1 patient (2.2%) in group B. The difference in the retear rate was statistically significant between the 2 groups (P = .037). Conclusion: A significantly lower retear rate and comparable clinical outcomes were seen after the double-row modified Mason-Allen repair technique with a single knot when compared with the single-row modified Mason-Allen technique. Based on these findings, the double-row modified Mason-Allen repair technique with a single knot can be considered a surgical treatment option that can provide sufficient stability in small- to medium-sized supraspinatus tears.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675430

RESUMEN

For many years, sustained-release drug delivery systems (SRDDS) have emerged as a featured topic in the pharmaceutical field. Particularly for chronic diseases, such as osteoarthritis, there is a lot of demand for SRDDS because of the long treatment period and repetitive medication administration. Thus, we developed an injectable PLGA-F127 microsphere (MS) that is capable of the in situ conversion to an implant. The microprecipitation method for PLGA-F127 MS was established, and the physicochemical stability of the products was confirmed. The microspheres were assembled into a single mass in 37 °C aqueous conditions and showed a remarkably delayed drug release profile. First, the release started with no significant initial burst and lagged for 60 days. After that, in the next 40 days, the remaining 75% of the drugs were constantly released until day 105. We expect that our PLGA-F127 MS could be employed to extend the release period of 2 months of medication to 4 months. This could be a valuable solution for developing novel SRDDS for local injections.

4.
Sci Adv ; 10(13): eadj9600, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536932

RESUMEN

Recently identified human FOXP3lowCD45RA- inflammatory non-suppressive (INS) cells produce proinflammatory cytokines, exhibit reduced suppressiveness, and promote antitumor immunity unlike conventional regulatory T cells (Tregs). In spite of their implication in tumors, the mechanism for generation of FOXP3lowCD45RA- INS cells in vivo is unclear. We showed that the FOXP3lowCD45RA- cells in human tumors demonstrate attenuated expression of CRIF1, a vital mitochondrial regulator. Mice with CRIF1 deficiency in Tregs bore Foxp3lowINS-Tregs with mitochondrial dysfunction and metabolic reprograming. The enhanced glutaminolysis activated α-ketoglutarate-mTORC1 axis, which promoted proinflammatory cytokine expression by inducing EOMES and SATB1 expression. Moreover, chromatin openness of the regulatory regions of the Ifng and Il4 genes was increased, which facilitated EOMES/SATB1 binding. The increased α-ketoglutarate-derived 2-hydroxyglutarate down-regulated Foxp3 expression by methylating the Foxp3 gene regulatory regions. Furthermore, CRIF1 deficiency-induced Foxp3lowINS-Tregs suppressed tumor growth in an IFN-γ-dependent manner. Thus, CRIF1 deficiency-mediated mitochondrial dysfunction results in the induction of Foxp3lowINS-Tregs including FOXP3lowCD45RA- cells that promote antitumor immunity.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz , Enfermedades Mitocondriales , Neoplasias , Humanos , Ratones , Animales , Linfocitos T Reguladores , Ácidos Cetoglutáricos/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Citocinas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
5.
J Chest Surg ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38378637

RESUMEN

Fetal lung interstitial tumor (FLIT), which is characterized by immature interstitial cells resembling the fetal lung parenchyma of 20 to 24 weeks of gestation, is a rare respiratory neoplasm. This study presents the first reported FLIT in Korea. It also aims to refine the diagnostic method of FLIT and increase the accuracy of prognostic assessment by using next-generation sequencing to check for anaplastic lymphoma receptor tyrosine kinase (anaplastic lymphoma kinase) gene rearrangement. Although the initial prognosis for FLIT has been promising since its first report in 2010, certain pathological features are associated with poorer outcomes. Therefore, achieving an accurate diagnosis of FLIT is crucial for avoiding unnecessary treatments beyond surgical resection.

6.
J Pathol Transl Med ; 58(2): 59-71, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38247153

RESUMEN

BACKGROUND: The classification of nodal peripheral T-cell lymphoma (PTCL) has evolved according to histology, cell-of-origin, and genetic alterations. However, the comprehensive expression pattern of follicular helper T-cell (Tfh) markers, T-cell factor-1 (TCF1), and Th1- and Th2-like molecules in nodal PTCL is unclear. METHODS: Eighty-two cases of nodal PTCL were classified into 53 angioimmunoblastic T-cell lymphomas (AITLs)/nodal T-follicular helper cell lymphoma (nTFHL)-AI, 18 PTCLs-Tfh/nTFHL-not otherwise specified (NOS), and 11 PTCLs-NOS according to the revised 4th/5th World Health Organization classifications. Immunohistochemistry for TCF1, TBX21, CXCR3, GATA3, and CCR4 was performed. RESULTS: TCF1 was highly expressed in up to 68% of patients with nTFHL but also in 44% of patients with PTCL-NOS (p > .05). CXCR3 expression was higher in AITLs than in non-AITLs (p = .035), whereas GATA3 expression was higher in non-AITL than in AITL (p = .007) and in PTCL-Tfh compared to AITL (p = .010). Of the cases, 70% of AITL, 44% of PTCLTfh/ nTFHL-NOS, and 36% of PTCL-NOS were subclassified as the TBX21 subtype; and 15% of AITL, 38% of PTCL-Tfh/nTFHL-NOS, and 36% of PTCL-NOS were subclassified as the GATA3 subtype. The others were an unclassified subtype. CCR4 expression was associated with poor progression-free survival (PFS) in patients with PTCL-Tfh (p < .001) and nTFHL (p = .023). The GATA3 subtype showed poor overall survival in PTCL-NOS compared to TBX21 (p = .046) and tended to be associated with poor PFS in patients with non-AITL (p = .054). CONCLUSIONS: The TBX21 subtype was more prevalent than the GATA3 subtype in AITL. The GATA3 subtype was associated with poor prognosis in patients with non-AITL and PTCL-NOS.

7.
Elife ; 122023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917548

RESUMEN

Invariant natural-killer T (iNKT) cells play pathogenic roles in allergic asthma in murine models and possibly also humans. While many studies show that the development and functions of innate and adaptive immune cells depend on their metabolic state, the evidence for this in iNKT cells is very limited. It is also not clear whether such metabolic regulation of iNKT cells could participate in their pathogenic activities in asthma. Here, we showed that acetyl-coA-carboxylase 1 (ACC1)-mediated de novo fatty-acid synthesis is required for the survival of iNKT cells and their deleterious functions in allergic asthma. ACC1, which is a key fatty-acid synthesis enzyme, was highly expressed by lung iNKT cells from WT mice that were developing asthma. Cd4-Cre::Acc1fl/fl mice failed to develop OVA-induced and HDM-induced asthma. Moreover, iNKT cell-deficient mice that were reconstituted with ACC1-deficient iNKT cells failed to develop asthma, unlike when WT iNKT cells were transferred. ACC1 deficiency in iNKT cells associated with reduced expression of fatty acid-binding proteins (FABPs) and peroxisome proliferator-activated receptor (PPAR)γ, but increased glycolytic capacity that promoted iNKT-cell death. Furthermore, circulating iNKT cells from allergic-asthma patients expressed higher ACC1 and PPARG levels than the corresponding cells from non-allergic-asthma patients and healthy individuals. Thus, de novo fatty-acid synthesis prevents iNKT-cell death via an ACC1-FABP-PPARγ axis, which contributes to their homeostasis and their pathogenic roles in allergic asthma.


Asunto(s)
Asma , Células T Asesinas Naturales , Hipersensibilidad Respiratoria , Humanos , Animales , Ratones , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/patología , Asma/patología , Homeostasis , Muerte Celular
8.
J Agric Food Chem ; 71(46): 17788-17800, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955544

RESUMEN

Citrus fruits are rich in dietary flavonoids and have many health benefits, but their antiadipogenic mechanism of action and their impact on lipid metabolism remain unclear. In this study, we investigated the effect of citrus flavonoids, namely, hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on preventing fat cell development by gene expression in 3T3-L1 adipocytes. Among the citrus flavonoids tested, HES and NAR significantly reduced fat storage and triglyceride levels and increased glucose uptake in 3T3-L1 adipocytes. Additionally, HES and NAR treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) while reducing the protein expression of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Furthermore, in silico docking revealed that flavonoids activate AMPK. RNA sequencing analysis demonstrated that citrus flavonoids normalized the expression of 40 genes, which were either upregulated by more than 2-fold or downregulated by less than 0.6-fold including Acadv1, Acly, Akr1d1, Awat1, Cyp27a1, Decr1, Dhrs4, Elovl3, Fasn, G6pc, Gba, Hmgcs1, Mogat2, Lrp5, Sptlc3, and Snca to levels comparable to the control group. Altogether, HES and NAR among five citrus flavonoids showed antiadipogenic effects by regulating the expression of specific lipid metabolism genes partially restored to control levels in 3T3-L1 cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Citrus , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Células 3T3-L1 , Adipogénesis , Citrus/metabolismo , Adipocitos/metabolismo , Flavonoides/farmacología , Flavonoides/metabolismo , Análisis de Secuencia de ARN
9.
Clin Orthop Surg ; 15(4): 616-626, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37529193

RESUMEN

Background: Disruption of the rotator cuff muscles compromises concavity compression force, which leads to superior migration of the humeral head and loss of stability. A novel idea of using the magnetic force to achieve shoulder stabilization in massive rotator cuff tears (MRCTs) was considered because the magnets can stabilize two separate entities with an attraction force. This study aimed to investigate the biomechanical effect of the magnetic force on shoulder stabilization in MRCTs. Methods: Seven fresh frozen cadaveric specimens were used with a customized shoulder testing system. Three testing conditions were set up: condition 1, intact rotator cuff without magnets; condition 2, an MRCT without magnets; condition 3, an MRCT with magnets. For each condition, anterior-posterior translation, superior translation, superior migration, and subacromial contact pressure were measured at 0°, 30°, and 60° of abduction. The abduction capability of condition 2 was compared with that of condition 3. Results: The anterior-posterior and superior translations increased in condition 2; however, they decreased compared to condition 2 when the magnets were applied (condition 3) in multiple test positions and loadings (p < 0.05). Abduction capability improved significantly in condition 3 compared with that in condition 2, even for less deltoid loading (p < 0.05). Conclusions: The magnet biomechanically played a positive role in stabilizing the shoulder joint and enabled abduction with less deltoid force in MRCTs. However, to ensure that the magnet is clinically applicable as a stabilizer for the shoulder joint, it is necessary to thoroughly verify its safety in the human body and to conduct further research on technical challenges.


Asunto(s)
Lesiones del Manguito de los Rotadores , Articulación del Hombro , Humanos , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Articulación del Hombro/diagnóstico por imagen , Articulación del Hombro/fisiología , Imanes , Fenómenos Biomecánicos , Cadáver , Rango del Movimiento Articular/fisiología
10.
Cancer Res ; 83(18): 3045-3058, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37395684

RESUMEN

Potentiating antitumor immunity is a promising therapeutic approach for treating a variety of cancers, including breast cancer. One potential strategy to promote antitumor immunity is targeting DNA damage response. Given that the nuclear receptor NR1D1 (also known as REV-ERBα) inhibits DNA repair in breast cancer cells, we explored the role of NR1D1 in antitumor CD8+ T-cell responses. First, deletion of Nr1d1 in MMTV-PyMT transgenic mice resulted in increased tumor growth and lung metastasis. Orthotopic allograft experiments suggested that loss of Nr1d1 in tumor cells rather than in stromal cells played a prominent role in increasing tumor progression. Comprehensive transcriptome analyses revealed that biological processes including type I IFN signaling and T cell-mediated immune responses were associated with NR1D1. Indeed, the expression of type I IFNs and infiltration of CD8+ T cells and natural killer cells in tumors were suppressed in Nr1d1-/-;MMTV-PyMT mice. Mechanistically, NR1D1 promoted DNA damage-induced accumulation of cytosolic DNA fragments and activated cGAS-STING signaling, which increased the production of type I IFNs and downstream chemokines CCL5 and CXCL10. Pharmacologic activation of NR1D1 by its ligand, SR9009, enhanced type I IFN-mediated antitumor immunity accompanied by the suppression of tumor progression and lung metastasis. Taken together, these findings reveal the critical role of NR1D1 in enhancing antitumor CD8+ T-cell responses, suggesting that NR1D1 may be a good therapeutic target for breast cancer. SIGNIFICANCE: NR1D1 suppresses breast cancer progression and lung metastasis by enhancing antitumor immunity via cGAS-STING pathway activation, which provides potential immunotherapeutic strategies for breast cancer.


Asunto(s)
Interferón Tipo I , Neoplasias Pulmonares , Animales , Ratones , Reparación del ADN , Inmunidad , Interferón Tipo I/metabolismo , Neoplasias Pulmonares/patología , Nucleotidiltransferasas/genética , Transducción de Señal
11.
Cell Death Discov ; 9(1): 278, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524704

RESUMEN

Nuclear receptor Rev-erbα (NR1D1) is a major negative regulator of the circadian clock. Numerous studies have investigated the role of circadian clock-related factors in the tumorigenesis of multiple cancer types, but little is known about the role of NR1D1 in cancer development. In this study, we identified the role of NR1D1 in lung tumorigenesis using genetically engineered mouse models of Nr1d1. Although NR1D1 overexpression or knockdown had little effect on the proliferation of NSCLC cells in vitro, NR1D1 deficiency in the tumor microenvironment increased lung cancer development compared with the control in the orthotopic model. NR1D1-deficient mice showed increased NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activation, and conditioned medium (CM) from NR1D1-deficient macrophages increased the proliferation and epithelial-mesenchymal transition (EMT) of lung cancer cells. Treatment with MCC950, a specific inhibitor of NLRP3 inflammasome, blocked tumorigenesis in NR1D1-deficient mice in an orthotopic lung cancer model. In addition, MCC950 treatment blocked the increased proliferation and EMT of cancer cells induced by CM from NR1D1-deficient macrophages in vitro. Our results showed that NR1D1 in the tumor microenvironment functions as a tumor suppressor by negatively regulating the NLRP3 inflammasome, suggesting that the NLRP3 inflammasome blockade via NR1D1 activation could be a therapeutic strategy to overcome lung cancer.

12.
Fish Shellfish Immunol ; 140: 108937, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37433357

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs known to play a significant role in the regulation of gene expression in various living organisms including fish. MiR-155 is known to enhance immunity in cells and several reports have demonstrated the antiviral properties of miR-155 in mammals. In this study, we investigated the antiviral role of miR-155 in Epithelioma papulosum cyprini (EPC) cells with viral hemorrhagic septicemia virus (VHSV) infection. EPC cells were transfected with miR-155 mimic and then infected with VHSV at different MOIs (0.01 and 0.001). The cytopathogenic effect (CPE) was observed at 0, 24, 48, and 72 h post infection (h.p.i). CPE progression appeared at 48 h.p.i in mock groups (VHSV only infected groups) and the VHSV infection group transfected with miR-155 inhibitors. On the other hand, the groups transfected with the miR-155 mimic did not show any CPE formation after infection with VHSV. The supernatant was collected at 24, 48 and 72 h.p.i., and the viral titers were measured by plaque assay. The viral titers increased at 48 and 72 h.p.i in groups infected only with VHSV. In contrast, the groups transfected with miR-155 did not show any increase in the virus titer and had a similar titer to 0 h.p.i. Furthermore, the real-time RT-PCR of immune gene expression showed upregulation of Mx1 and ISG15 at 0, 24, and 48 h.p.i in groups transfected with miR-155, while the genes were upregulated at 48 h.p.i in groups infected only with VHSV. Based on these results, miR-155 can induce the overexpression of type I interferon-related immune genes in EPCs and inhibit the viral replication of VHSV. Therefore, these results suggest that miR-155 could possess an antiviral effect against VHSV.


Asunto(s)
Carcinoma , Enfermedades de los Peces , Septicemia Hemorrágica Viral , MicroARNs , Novirhabdovirus , Animales , Antivirales , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Novirhabdovirus/fisiología , Mamíferos/metabolismo
13.
Mod Pathol ; 36(9): 100224, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257823

RESUMEN

An Immunoscore based on tumor-infiltrating T-cell density was validated as a prognostic factor in patients with solid tumors. However, the potential utility of the Immunoscore in predicting the prognosis of patients with diffuse large B-cell lymphoma (DLBCL) is unclear. Here, the prognostic value of an Immunoscore based on tumor-infiltrating CD3+ T-cell density was evaluated in 104 patients with DLBCL who underwent R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone) therapy. Digitally scanned whole-slide images were analyzed using Aperio ImageScope software. CD3+ cell densities in the whole tumor area were quantitated using 3 different methods, including number of CD3+ cells/area (mm2), ratio of CD3+ cells to total cells, and ratio of CD3+ cells to CD20+ cells. There was a high concordance among the 3 methods. Patients with low CD3+ cell density had an elevated serum lactate dehydrogenase level and a high Ki-67 proliferation index (all, P < .05). Patients with low CD3+ cell density, according to all 3 methods, had worse overall survival (OS) and worse progression-free survival (P < .05, all). They also had poor OS, independent of MYC/BCL2 double expression (DE) status, Eastern Cooperative Oncology Group performance status, or Ann Arbor stage (all, P < .05). These results were validated using 2 publicly available data sets. In both validation cohorts, patients with low CD3E mRNA expression had an elevated serum lactate dehydrogenase level, extranodal site involvement, and DE status (P < .05). They also had worse progression-free survival (P = .067 and P = .002, respectively) and OS (both P < .05). A low CD3E mRNA level was predictive of poor OS, independent of DE status. An Immunoscore based on whole-slide image analysis of CD3+ T-cell infiltration was sufficient to predict survival in patients with DLBCL. Low CD3+ cell density was a poor prognostic factor, independent of other prognostic parameters and DE status.


Asunto(s)
Linfocitos Infiltrantes de Tumor , Linfoma de Células B Grandes Difuso , Humanos , Pronóstico , Linfocitos Infiltrantes de Tumor/patología , Supervivencia sin Enfermedad , Rituximab/uso terapéutico , Linfoma de Células B Grandes Difuso/patología , Lactato Deshidrogenasas , Doxorrubicina/uso terapéutico , Ciclofosfamida/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Vincristina/uso terapéutico , Prednisona/uso terapéutico
14.
Cancer Res Treat ; 55(4): 1134-1143, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37218137

RESUMEN

PURPOSE: In patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC), EGFR tyrosine kinase inhibitors (TKIs) improve response rate and survival. However, most patients eventually develop resistance. This study aimed to identify the role of CD73 in EGFR-mutant NSCLC and explore whether CD73 inhibition may serve as a therapeutic strategy in NSCLC patients with acquired resistance to EGFR-TKIs. MATERIALS AND METHODS: We evaluated the prognostic role of CD73 expression in EGFR-mutant NSCLC using tumor samples from a single institution. We silenced CD73 in EGFR-TKI-resistant cell lines using short hairpin RNA (shRNA) targeting CD73 and also transfected a vector alone as a negative control. Using these cell lines, cell proliferation and viability assays, immunoblot assays, cell cycle analysis, colony-forming assays, flow cytometry, and apoptosis analysis were performed. RESULTS: High expression of CD73 was associated with shorter survival in patients with metastatic EGFR-mutant NSCLC treated with first-generation EGFR-TKI. CD73 inhibition synergistically inhibited cell viability with first-generation EGFR-TKI treatment compared with the negative control. When CD73 inhibition and EGFR-TKI treatment were combined, G0/G1 cell cycle arrest was induced through the regulation of p21 and cyclin D1. In addition, the apoptosis rate was increased in CD73 shRNA-transfected cells treated with EGFR-TKI. CONCLUSION: High expression of CD73 adversely affects the survival of patients with EGFR-mutant NSCLC. The study demonstrated that inhibiting CD73 in EGFR-TKI-resistant cell lines resulted in increased apoptosis and cell cycle arrest, which overcame the acquired resistance to first-generation EGFR-TKIs. Further research is needed to determine whether blocking CD73 plays a therapeutic role in EGFR-TKI-resistant patients with EGFR-mutant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos , Línea Celular Tumoral , Receptores ErbB , ARN Interferente Pequeño , Mutación
15.
Ann Am Thorac Soc ; 20(7): 1020-1028, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37075305

RESUMEN

Rationale: Modeling imaging surrogates for well-validated histopathological risk factors would enable prognostication in early-stage lung adenocarcinomas. Objectives: We aimed to develop and validate computed tomography (CT)-based deep learning (DL) models for the prognostication of early-stage lung adenocarcinomas through learning histopathological features and to investigate the models' reproducibility using retrospective, multicenter datasets. Methods: Two DL models were trained to predict visceral pleural invasion and lymphovascular invasion, respectively, using preoperative chest CT scans from 1,426 patients with stage I-IV lung adenocarcinomas. The averaged model output was defined as the composite score and evaluated for the prognostic discrimination and its added value to clinicopathological factors in temporal (n = 610) and external test sets (n = 681) of stage I lung adenocarcinomas. The study outcomes were freedom from recurrence (FFR) and overall survival (OS). Interscan and interreader reproducibility were analyzed in 31 patients with lung cancer who underwent same-day repeated CT scans. Results: For the temporal test set, the time-dependent area under the receiver operating characteristic curve was 0.76 (95% confidence interval [CI], 0.71-0.81) for 5-year FFR and 0.67 (95% CI, 0.59-0.75) for 5-year OS. For the external test set, the area under the curve was 0.69 (95% CI, 0.63-0.75) for 5-year OS. The discrimination performance remained stable in 10-year follow-up for both outcomes. The prognostic value of the composite score was independent of and complementary to the clinical factors (adjusted per-percent hazard ratio for FFR [temporal test], 1.04 [95% CI, 1.03-1.05; P < 0.001]; OS [temporal test], 1.03 [95% CI, 1.02-1.04; P < 0.001]; OS [external test], 1.03 [95% CI, 1.02-1.04; P < 0.001]). The likelihood ratio tests indicated added value of the composite score (all P < 0.05). The interscan and interreader reproducibility were excellent (Pearson's correlation coefficient, 0.98 for both). Conclusions: The CT-based composite score obtained from DL of histopathological features predicted survival in early-stage lung adenocarcinomas with high reproducibility.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Adenocarcinoma del Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Tomografía Computarizada por Rayos X/métodos
16.
Sci Rep ; 13(1): 3556, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864088

RESUMEN

Bioluminescence imaging is useful for non-invasively monitoring inflammatory reactions associated with disease progression, and since NF-κB is a pivotal transcription factor that alters expressions of inflammatory genes, we generated novel NF-κB luciferase reporter (NF-κB-Luc) mice to understand the dynamics of inflammatory responses in whole body, and also in various type of cells by crossing NF-κB-Luc mice with cell-type specific Cre expressing mice (NF-κB-Luc:[Cre]). Bioluminescence intensity was significantly increased in NF-κB-Luc (NKL) mice exposed to inflammatory stimuli (PMA or LPS). Crossing NF-κB-Luc mice with Alb-cre mice or Lyz-cre mice generated NF-κB-Luc:Alb (NKLA) and NF-κB-Luc:Lyz2 (NKLL) mice, respectively. NKLA and NKLL mice showed enhanced bioluminescence in liver and macrophages, respectively. To confirm that our reporter mice could be utilized for the non-invasive monitoring of inflammation in preclinical models, we conducted a DSS-induced colitis model and a CDAHFD-induced NASH model in our reporter mice. In both models, our reporter mice reflected the development of these diseases over time. In conclusion, we believe that our novel reporter mouse can be utilized as a non-invasive monitoring platform for inflammatory diseases.


Asunto(s)
Colitis , FN-kappa B , Animales , Ratones , Progresión de la Enfermedad , Inflamación , Hígado
18.
Sci Immunol ; 8(81): eadf2248, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36961907

RESUMEN

Communication between CD4 T cells and cognate B cells is key for the former to fully mature into germinal center-T follicular helper (GC-TFH) cells and for the latter to mount a CD4 T cell-dependent humoral immune response. Although this interaction occurs in a B:T synapse-dependent manner, how CD4 T cells transcriptionally regulate B:T synapse formation remains largely unknown. Here, we report that Mef2d, an isoform of the myocyte enhancer factor 2 (Mef2) transcription factor family, is a critical regulator of this process. In CD4 T cells, Mef2d negatively regulates expression of Sh2d1a, which encodes SLAM-associated protein (SAP), a critical regulator of B:T synapses. We found that Mef2d regulates Sh2d1a expression via DNA binding-dependent transcriptional repression, inhibiting SAP-dependent B:T synapse formation and preventing antigen-specific CD4 T cells from differentiating into GC-TFH cells. Mef2d also impeded IL-21 production by CD4 T cells, an important B cell help signaling molecule, via direct repression of the Il21 gene. In contrast, CD4 T cell-specific disruption of Mef2d led to a substantial increase in GC-TFH differentiation in response to protein immunization, concurrent with enhanced SAP expression. MEF2D mRNA expression inversely correlates with human systemic lupus erythematosus (SLE) patient autoimmune parameters, including circulating TFH-like cell frequencies, autoantibodies, and SLEDAI scores. These findings highlight Mef2d as a pivotal rheostat in CD4 T cells for controlling GC formation and antibody production by B cells.


Asunto(s)
Inmunidad Humoral , Linfocitos T Colaboradores-Inductores , Humanos , Factores de Transcripción/metabolismo , Diferenciación Celular , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo
19.
Front Immunol ; 14: 1101808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776879

RESUMEN

Introduction: Despite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. Methods: Here, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. Results: Differential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. Discussion: Aberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Cinética , Síndrome Post Agudo de COVID-19 , Inflamación , Mediadores de Inflamación , Interferón-alfa
20.
PLoS One ; 18(1): e0280364, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649303

RESUMEN

The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival.


Asunto(s)
Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Perfilación de la Expresión Génica , Pronóstico , Linfocitos T CD4-Positivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...