Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 106: 129735, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588785

RESUMEN

A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation.


Asunto(s)
Benzoxazinas , Canales Catiónicos TRPV , Urea , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Relación Estructura-Actividad , Benzoxazinas/química , Benzoxazinas/farmacología , Benzoxazinas/síntesis química , Urea/análogos & derivados , Urea/química , Urea/farmacología , Urea/síntesis química , Humanos , Estructura Molecular , Animales , Capsaicina/farmacología , Capsaicina/química , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga
2.
Bioorg Med Chem Lett ; 101: 129656, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355061

RESUMEN

To discover mode-selective TRPV1 antagonists as thermoneutral drug candidates, the previous potent antagonist benzopyridone 2 was optimized based on the pharmacophore A- and C-regions. The structure activity relationship was investigated systematically by modifying the A-region by incorporating a polar side chain on the pyridone and then by changing the C-region with a variety of substituted pyridine and pyrazole moieties. The 3-t-butyl and 3-(1-methylcyclopropyl) pyrazole C-region analogs provided high potency as well as mode-selectivity. Among them, 51 and 54 displayed potent and capsaicin-selective antagonism with IC50 = 2.85 and 3.27 nM to capsaicin activation and 28.5 and 31.5 % inhibition at 3 µM concentration toward proton activation, respectively. The molecular modeling study of 51 with our homology model indicated that the hydroxyethyl side chain in the A-region interacted with Arg557 and Glu570, the urea B-region engaged in hydrogen bonding with Tyr511 and Thr550, respectively, and the pyrazole C-region made two hydrophobic interactions with the receptor. Optimization of antagonist 2, which has full antagonism for activators of all modes, lead to mode-selective antagonists 51 and 54. These observations will provide insight into the future development of clinical TRPV1 antagonists without target-based side effects.


Asunto(s)
Capsaicina , Urea , Urea/química , Capsaicina/farmacología , Relación Estructura-Actividad , Modelos Moleculares , Pirazoles/farmacología , Canales Catiónicos TRPV
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...