Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 13: 992107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247754

RESUMEN

Background: Unilateral spatial neglect (USN) is common and associated with poor motor and cognitive outcomes as well as impaired quality of life following stroke. Traditionally, the neural substrates underlying USN have been thought to be cortical areas, such as the posterior parietal cortex. However, patients with stroke involving only subcortical structures may also present with USN. While only a few studies have reported on USN in subcortical stroke, the involvement of white matter tracts related to brain networks of visuospatial attention is one possible explanation for subcortical neglect. Therefore, this study aimed to investigate which specific white matter tracts are neural substrates for USN in patients with subcortical stroke. Methods: Twenty-two patients with subcortical stroke without cortical involvement who were admitted to the Department of Rehabilitation Medicine at Seoul National University Bundang Hospital were retrospectively enrolled. Nine subjects were subclassified into a "USN(+)" group, as they had at least two positive results on three tests (the Schenkenberg line bisection test, Albert's test, and house drawing test) and a score of 1 or higher on the Catherine Bergego scale. The remaining 13 subjects without abnormalities on those tests were subclassified into the "USN(-)" group. Stroke lesions on MRI were manually drawn using MRIcron software. Lesion overlapping and atlas-based analyses of MRI images were conducted. The correlation was analyzed between the overlapped lesion volumes with white matter tracts and the severity of USN (in the Albert test and the Catherine Bergego scale). Results: Lesions were more widespread in the USN(+) group than in the USN(-) group, although their locations in the right hemisphere were similar. The atlas-based analyses identified that the right cingulum in the cingulate cortex, the temporal projection of the superior longitudinal fasciculus, and the forceps minor significantly overlapped with the lesions in the USN(+) group than in the USN(-) group. The score of the Catherine Bergego scale correlated with the volume of the involved white matter tracts. Conclusion: In this study, white matter tracts associated with USN were identified in patients with subcortical stroke without any cortical involvement. Our study results, along with previous findings on subcortical USN, support that USN may result from damage to white matter pathways.

2.
Sci Rep ; 12(1): 5152, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338192

RESUMEN

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are two representative chronic inflammatory demyelinating disorders of the central nervous system. We aimed to determine and compare the alterations of white matter (WM) connectivity between MS, NMOSD, and healthy controls (HC). This study included 68 patients with relapsing-remitting MS, 50 with NMOSD, and 26 HC. A network-based statistics method was used to assess disrupted patterns in WM networks. Topological characteristics of the three groups were compared and their associations with clinical parameters were examined. WM network analysis indicated that the MS and NMOSD groups had lower total strength, clustering coefficient, global efficiency, and local efficiency and had longer characteristic path length than HC, but there were no differences between the MS and NMOSD groups. At the nodal level, the MS group had more brain regions with altered network topologies than did the NMOSD group when compared with the HC group. Network alterations were correlated with Expanded Disability Status Scale score and disease duration in both MS and NMOSD groups. Two distinct subnetworks that characterized the disease groups were also identified. When compared with NMOSD, the most discriminative connectivity changes in MS were located between the thalamus, hippocampus, parahippocampal gyrus, amygdala, fusiform gyrus, and inferior and superior temporal gyri. In conclusion, MS patients had greater network dysfunction compared to NMOSD and altered short connections within the thalamus and inferomedial temporal regions were relatively spared in NMOSD compared with MS.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Neuromielitis Óptica/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Recurrente-Remitente/patología , Neuromielitis Óptica/patología , Lóbulo Temporal/patología
3.
J Neurol Sci ; 420: 117266, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33341084

RESUMEN

Subcortical aphasia develops as a result of damage to subcortical brain areas without loss of cortical functions. Although earlier voxel-based lesion-symptom mapping (VLSM) studies have shown possible neural correlates for aphasia, it remains to be clarified which brain regions are associated with subcortical aphasia. The aim of this study was to investigate the neural substrates associated with subcortical aphasia in patients with stroke using VLSM and atlas-based analyses to explore the involvement of white matter tracts and subcortical structures. Fifty patients with subacute subcortical stroke without cortical involvement were retrospectively enrolled: 24 with and 26 without aphasia. We performed VLSM and atlas-based analyses of the patients' fluid-attenuated inversion recovery images and found that the left perisylvian white matter, left fronto-occipital fasciculus, uncinate fasciculus, and forceps minor were significantly more greatly affected in the aphasia than in the non-aphasia group. The left anterior thalamic radiation, cingulum (cingulate gyrus), and superior longitudinal fasciculus also showed higher involvement in this group (marginal significance). Among the subcortical regions, the left caudate and putamen were more greatly involved in the aphasia group. Our findings confirm language processing as one of the integrated sensory-motor processes that occur in the region around the left sylvian fissure. Our atlas-based analysis approach can be used to complement VLSM analyses.


Asunto(s)
Afasia , Accidente Cerebrovascular , Sustancia Blanca , Afasia/diagnóstico por imagen , Afasia/etiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Estudios Retrospectivos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...