Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2406018, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101351

RESUMEN

Although various electrocatalysts have been developed to ameliorate the shuttle effect and sluggish Li-S conversion kinetics, their electrochemical inertness limits the sufficient performance improvement of lithium-sulfur batteries (LSBs). In this work, an electrochemically active MoO3/TiN-based heterostructure (MOTN) is designed as an efficient sulfur host that can improve the overall electrochemical properties of LSBs via prominent lithiation behaviors. By accommodating Li ions into MoO3 nanoplates, the MOTN host can contribute its own capacity. Furthermore, the Li intercalation process dynamically affects the electronic interaction between MoO3 and TiN and thus significantly reinforces the built-in electric field, which further improves the comprehensive electrocatalytic abilities of the MOTN host. Because of these merits, the MOTN host-based sulfur cathode delivers an exceptional specific capacity of 2520 mA h g-1 at 0.1 C. Furthermore, the cathode exhibits superior rate capability (564 mA h g-1 at 5 C), excellent cycling stability (capacity fade rate of 0.034% per cycle for 1200 cycles at 2 C), and satisfactory areal capacity (6.6 mA h cm-2) under a high sulfur loading of 8.3 mg cm-2. This study provides a novel strategy to develop electrochemically active heterostructured electrocatalysts and rationally manipulate the built-in electric field for achieving high-performance LSBs.

2.
Nat Commun ; 15(1): 4672, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824151

RESUMEN

The oxygen evolution reaction, which involves high overpotential and slow charge-transport kinetics, plays a critical role in determining the efficiency of solar-driven water splitting. The chiral-induced spin selectivity phenomenon has been utilized to reduce by-product production and hinder charge recombination. To fully exploit the spin polarization effect, we herein propose a dual spin-controlled perovskite photoelectrode. The three-dimensional (3D) perovskite serves as a light absorber while the two-dimensional (2D) chiral perovskite functions as a spin polarizer to align the spin states of charge carriers. Compared to other investigated chiral organic cations, R-/S-naphthyl ethylamine enable strong spin-orbital coupling due to strengthened π-π stacking interactions. The resulting naphthyl ethylamine-based chiral 2D/3D perovskite photoelectrodes achieved a high spin polarizability of 75%. Moreover, spin relaxation was prevented by employing a chiral spin-selective L-NiFeOOH catalyst, which enables the secondary spin alignment to promote the generation of triplet oxygen. This dual spin-controlled 2D/3D perovskite photoanode achieves a 13.17% of applied-bias photon-to-current efficiency. Here, after connecting the perovskite photocathode with L-NiFeOOH/S-naphthyl ethylamine 2D/3D photoanode in series, the resulting co-planar water-splitting device exhibited a solar-to-hydrogen efficiency of 12.55%.

3.
Small ; 19(27): e2300174, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36965011

RESUMEN

A wireless solar water splitting device provides a means to achieve an inexpensive and highly distributed solar-to-fuel system owing to its portability, flexible scale, and simple design. Here, a highly efficient hydrogen-generating artificial leaf is introduced, which is a wireless configuration for converting solar energy into chemical energy, by integrating a hybrid perovskite (PSK) as the light absorber with catalysts for electrochemical reaction. First, a single integrated photoelectrochemical photocathode, and a spatially decoupled hydrogen evolution reaction catalyst, are fabricated. A decoupled geometry is adopted to enable the physical protection of the PSK layer from the electrolyte, thus allowing excellent stability for over 85 h. Additionally, an efficient dual photovoltaic module photocathode is fabricated to produce sufficient photovoltage to drive water splitting reactions, as well as a high photocurrent to achieve the applied-bias photoconversion efficiency (13.5%). To investigate the overall water splitting performance, a NiFe-OH catalyst is employed, and the device with a wired configuration achieves a photocurrent density of 9.35 mA cm-2 , corresponding to a solar to hydrogen (STH) efficiency of 11.5%. The device with a fully integrated wireless artificial leaf configuration exhibited a similar STH efficiency of over 11%, demonstrating the effectiveness of this cell design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA