Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Immune Netw ; 24(2): e7, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38725670

RESUMEN

Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019. In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virus-infected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105 PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.

2.
Heliyon ; 10(6): e28326, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38532995

RESUMEN

The various strains of influenza virus cause respiratory symptoms in humans every year and annual vaccinations are recommended. Due to its RNA-type genes and segmented state, it belongs to a virus that mutates frequently with antigenic drift and shift, giving rise to various strains. Each year, the World Health Organization identifies the epidemic strains and operates a global surveillance system to suggest the viral composition for the influenza vaccine. Influenza viruses, which have multiple viral strains, are produced in the format of multivalent vaccine. However, the multivalent vaccine has a possibility of causing immune interference by introducing multiple strain-specific antigens in a single injection. Therefore, evaluating immune interference phenomena is essential when assessing multivalent vaccines. In this study, the protective ability and immunogenicity of multivalent and monovalent vaccines were evaluated in mice to assess immune interference in the multivalent vaccine. Monovalent and multivalent vaccines were manufactured using the latest strain of the 2022-2023 seasonal influenza virus selected by the World Health Organization. The protective abilities of both types of vaccines were tested through hemagglutination inhibition test. The immunogenicity of multivalent and monovalent vaccines were tested through enzyme-linked immunosorbent assay to measure the cellular and humoral immunity expression rates. As a result of the protective ability and immunogenicity test, higher level of virus neutralizing ability and greater amount of antibodies in both IgG1 and IgG2 were confirmed in the multivalent vaccine. No immune interference was found to affect the protective capacity and immune responses of the multivalent vaccines.

3.
ACS Nano ; 18(6): 4847-4861, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38189789

RESUMEN

Infectious diseases pose persistent threats to public health, demanding advanced vaccine technologies. Nanomaterial-based delivery systems offer promising solutions to enhance immunogenicity while minimizing reactogenicity. We introduce a self-assembled vaccine (SAV) platform employing antigen-polymer conjugates designed to facilitate robust immune responses. The SAVs exhibit efficient cellular uptake by dendritic cells (DCs) and macrophages, which are crucial players in the innate immune system. The high-density antigen presentation of this SAV platform enhances the affinity for DCs through multivalent recognition, significantly augmenting humoral immunity. SAV induced high levels of immunoglobulin G (IgG), IgG1, and IgG2a, suggesting that mature DCs efficiently induced B cell activation through multivalent antigen recognition. Universality was confirmed by applying it to respiratory viruses, showcasing its potential as a versatile vaccine platform. Furthermore, we have also demonstrated strong protection against influenza A virus infection with SAV containing hemagglutinin, which is used in influenza A virus subunit vaccines. The efficacy and adaptability of this nanostructured vaccine present potential utility in combating infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Virus de la Influenza A , Vacunas contra la Influenza , Nanoestructuras , Humanos , Antígenos , Inmunidad Humoral , Inmunoglobulina G , Anticuerpos Antivirales , Adyuvantes Inmunológicos
5.
Biotechnol J ; 19(1): e2300319, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37853601

RESUMEN

Infectious diseases such as Coronavirus disease 2019 (COVID-19) and Middle East respiratory syndrome (MERS) present an increasingly persistent crisis in many parts of the world. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The angiotensin-converting enzyme 2 (ACE2) is a crucial cellular receptor for SARS-CoV-2 infection. Inhibition of the interaction between SARS-CoV-2 and ACE2 has been proposed as a target for the prevention and treatment of COVID-19. We produced four recombinant plant-derived ACE2 isoforms with or without the mu tailpiece (µ-tp) of immunoglobulin M (IgM) and the KDEL endoplasmic reticulum retention motif in a plant expression system. The plant-derived ACE2 isoforms bound whole SARS-CoV-2 virus and the isolated receptor binding domains of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Omicron variants. Fusion of µ-tp and KDEL to the ACE2 protein (ACE2 µK) had enhanced binding activity with SARS-CoV-2 in comparison with unmodified ACE2 protein derived from CHO cells. Furthermore, the plant-derived ACE2 µK protein exhibited no cytotoxic effects on Vero E6 cells and effectively inhibited SARS-CoV-2 infection. The efficient and rapid scalability of plant-derived ACE2 µK protein offers potential for the development of preventive and therapeutic agents in the early response to future viral outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Enzima Convertidora de Angiotensina 2/metabolismo , Proteínas de Plantas/metabolismo , Cricetulus , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo
6.
Microorganisms ; 11(11)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38004769

RESUMEN

African swine fever (ASF) emerged in domestic pigs and wild boars in China in 2018 and rapidly spread to neighboring Asian countries. Currently, no effective vaccine or diagnostic tests are available to prevent its spread. We developed a robust quadruple recombinant-protein-based indirect enzyme-linked immunosorbent assay (QrP-iELISA) using four antigenic proteins (CD2v, CAP80, p54, and p22) to detect ASF virus (ASFV) antibodies and compared it with a commercial kit (IDvet) using ASFV-positive and -negative serum samples. The maximum positive/negative value was 24.033 at a single antigen concentration of 0.25 µg/mL and quadruple ASFV antigen combination of 1 µg/mL at a 1:100 serum dilution. Among 70 ASFV-positive samples, 65, 67, 65, 70, 70, and 14 were positive above the cut-offs of 0.121, 0.121, 0.183, 0.065, 0.201, and 0.122, for CD2v, CAP80, p54, p22-iELISA, QrP-iELISA, and IDvet, respectively, with sensitivities of 92.9%, 95.7%, 92.9%, 100%, 100%, and 20%, respectively, all with 100% specificity. The antibody responses in QrP-iELISA and IDvet were similar in pigs infected with ASFV I. QrP-iELISA was more sensitive than IDvet for early antibody detection in pigs infected with ASFV II. These data provide a foundation for developing advanced ASF antibody detection kits critical for ASF surveillance and control.

7.
Viruses ; 15(11)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38005846

RESUMEN

African swine fever (ASF) is one of the most lethal infectious diseases affecting domestic pigs and wild boars of all ages. Over a span of 100 years, ASF has continued to spread over continents and adversely affects the global pig industry. To date, no vaccine or treatment has been approved. The complex genome structure and diverse variants facilitate the immune evasion of the ASF virus (ASFV). Recently, advanced technologies have been used to design various potential vaccine candidates and effective diagnostic tools. This review updates vaccine platforms that are currently being used worldwide, with a focus on genetically modified live attenuated vaccines, including an understanding of their potential efficacy and limitations of safety and stability. Furthermore, advanced ASFV detection technologies are presented that discuss and incorporate the challenges that remain to be addressed for conventional detection methods. We also highlight a nano-bio-based system that enhances sensitivity and specificity. A combination of prophylactic vaccines and point-of-care diagnostics can help effectively control the spread of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vacunas Virales , Porcinos , Animales , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/genética , Sus scrofa , Vacunas Atenuadas
8.
ACS Appl Mater Interfaces ; 15(48): 55975-55983, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37994824

RESUMEN

The need exists for biosensing technologies capable of sensitively and accurately detecting various biomarkers. In response, the development of nanozymes is actively underway; they have advantages in stability, cost, performance, and functionalization over natural enzymes commonly used for signal amplification in sensing technologies. However, the performance of nanozymes is interdependent with factors such as shape, size, and surface functional moiety, making it challenging to perform quantitative performance comparisons based on the nanozyme material. In this study, we propose a physical synthetic approach to fabricate double-layered bimetallic nanozymes with identical shapes, sizes, and surfaces but different material compositions. These Janus nanozymes consist of a nanozymatic layer responsible for catalytic activity and a gold layer responsible for quantification and efficient surface modification. Based on their identical physicochemical properties, the synthesized double-layered bimetallic nanozymes allow, for the first time, a quantitative comparison of nanozymatic activities in terms of various kinetic parameters. We compared several candidates and found that the Ir-Au nanozyme exhibited the best performance. Subsequently, we applied this nanozyme to detect neutralizing antibodies against SARS-CoV-2 based on a surrogate virus neutralization test. The results demonstrated a limit of detection as low as 2 pg/mL and selectivity specifically toward MERS-CoV. The performance of this assay was further validated using vaccinated samples, demonstrating the potential of our approach as a cost-effective, rapid, and sensitive diagnostic tool for neutralizing antibody detection against viruses such as SARS-CoV-2.


Asunto(s)
Bioensayo , Coronavirus del Síndrome Respiratorio de Oriente Medio , Pruebas de Neutralización , Oro , Cinética , SARS-CoV-2
9.
Front Microbiol ; 14: 1256090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779710

RESUMEN

Subtype H10 avian influenza viruses (AIV) are distributed worldwide in wild aquatic birds, and can infect humans and several other mammalian species. In the present study, we investigated the naturally mutated PB2 gene in A/aquatic bird/South Korea/SW1/2018 (A/SW1/18, H10N1), isolated from wild birds during the 2018-2019 winter season. This virus was originally found in South Korea, and is similar to isolates from mainland China and Mongolia. It had low pathogenicity, lacked a multi-basic cleavage site, and showed a binding preference for α2,3-linked sialic acids. However, it can infect mice, causing severe disease and lung pathology. SW1 was also transmitted by direct contact in ferrets, and replicated in the respiratory tract tissue, with no evidence of extrapulmonary spread. The pathogenicity and transmissibility of SW1 in mouse and ferret models were similar to those of the pandemic strain A/California/04/2009 (A/CA/04, H1N1). These factors suggest that subtype H10 AIVs have zoonotic potential and may transmit from human to human, thereby posing a potential threat to public health. Therefore, the study highlights the urgent need for closer monitoring of subtype H10 AIVs through continued surveillance of wild aquatic birds.

10.
J Virol Methods ; 322: 114823, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748737

RESUMEN

African swine fever virus (ASFV) has continuously devastated the global pig industry. Viral persistence causes problems in large pig farms and kills small farms. Timely diagnostic tools play an important role in controlling outbreaks and minimizing losses. In this study, we developed a lateral flow assay to detect ASFV on-site. The VDRG® ASFV Ag Rapid Kit was established using two monoclonal antibodies (mAbs) against the p30 protein. The conjunction pad of the kit was coated with a mixture of the mAb and colloidal gold. This rapid kit was capable of detecting 11.5 ng of antigen and 0.16 HAD50 of virus from samples, in 20 min for the entire procedure. It passed cross-specific tests using common viruses that cause infectious diseases in pigs. ASFV was detected after 4 days in experimental infection in pigs by the kit. The specificity and sensitivity of the kit for clinical samples were 99.88% and 84.52% (93.8% for samples with a Ct value below 30), respectively. Finally, the kit can detect 100% positive herd outbreaks. The VDRG® ASFV Ag Rapid Kit presents a useful point-of-care tool for ASFV detection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Antígenos Virales
11.
Viruses ; 15(9)2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37766351

RESUMEN

Since its initial report in Vietnam in early 2019, the African swine fever (ASF), a highly lethal and severe viral swine disease worldwide, continues to cause outbreaks in other Southeast Asian countries. This study analyzed and compared the genomic sequences of ASF viruses (ASFVs) during the first outbreak in Hung Yen (VN/HY/2019-ASFV1) and Quynh Phu provinces (VN/QP/2019-ASFV1) in Vietnam in 2019, and the subsequent outbreak in Hung Yen (VN/HY/2022-ASFV2) in 2022, to those of other ASFV strains. VN/HY/2019-ASFV1, VN/QP/2019-ASFV1, and VN/HY/2022-ASFV2 genomes were 189,113, 189,081, and 189,607 bp in length, encoding 196, 196, and 203 open reading frames (ORFs), respectively. VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 shared a 99.91-99.99% average nucleotide identity with genotype II strains. Variations were identified in 28 ORFs in VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1 compared to 20 ASFV strains, and 16 ORFs in VN/HY/2022-ASFV2 compared to VN/HY/2019-ASFV1 and VN/QP/2019-ASFV1. Vietnamese ASFV genomes were classified as IGR II variants between the I73R and I329L genes, with two copy tandem repeats between the A179L and A137R genes. A phylogenetic analysis based on the whole genomes of 27 ASFV strains indicated that the Vietnamese ASFV strains are genetically related to Estonia 2014, ASFV-SY18, and Russia/Odintsovo_02/14. These results reveal the complete genome sequences of ASFV circulating during the first outbreak in 2019, providing important insights into understanding the evolution, transmission, and genetic variation of ASFV in Vietnam.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Vietnam/epidemiología , Fiebre Porcina Africana/epidemiología , Filogenia , Brotes de Enfermedades
12.
Front Immunol ; 14: 1200297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720232

RESUMEN

African swine fever (ASF) is an infectious disease caused by African swine fever virus (ASFV) that is highly contagious and has an extremely high mortality rate (infected by virulent strains) among domestic and wild pigs, causing huge economic losses to the pig industry globally. In this study, SDS-PAGE gel bands hybridized with ASFV whole virus protein combined with ASFV-convalescent and ASFV-positive pig serum were identified by mass spectrometry. Six antigens were detected by positive serum reaction bands, and eight antigens were detected in ASFV-convalescent serum. In combination with previous literature reports and proteins corresponding to MHC-II presenting peptides screened from ASFV-positive pig urine conducted in our lab, seven candidate antigens, including KP177R (p22), K78R (p10), CP204L (p30), E183L (p54), B602L (B602L), EP402R-N (CD2V-N) and F317L (F317L), were selected. Subunit-Group 1 was prepared by mixing above-mentioned seven ASFV recombinant proteins with MONTANIDETM1313 VG N mucosal adjuvant and immunizing pigs intranasally and intramuscularly. Subunit-Group 2 was prepared by mixing four ASFV recombinant proteins (p22, p54, CD2V-N1, B602L) with Montanide ISA 51 VG adjuvant and immunizing pigs by intramuscular injection. Anticoagulated whole blood, serum, and oral fluid were collected during immunization for flow cytometry, serum IgG as well as secretory sIgA antibody secretion, and cytokine expression testing to conduct a comprehensive immunogenicity assessment. Both immunogen groups can effectively stimulate the host to produce ideal humoral, mucosal, and cellular immune responses, providing a theoretical basis for subsequent functional studies, such as immunogens challenge protection and elucidation of the pathogenic mechanism of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Vacunación , Inmunización , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Antígenos de Histocompatibilidad Clase II , Inmunidad Celular
13.
Pulm Pharmacol Ther ; 80: 102189, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36634813

RESUMEN

Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.


Asunto(s)
COVID-19 , Animales , Cricetinae , Ratones , Humanos , SARS-CoV-2 , Pandemias , Anticuerpos Neutralizantes , Mesocricetus , Modelos Animales de Enfermedad
14.
Arch Virol ; 168(1): 21, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593422

RESUMEN

African swine fever (ASF) is a deadly disease in swine caused by African swine fever virus (ASFV). The global spread of ASFV has resulted in significant economic losses worldwide. Improved early detection has been the most important first line of defense for preventing ASF outbreaks and for activating control measures. Despite the availability of rapid amplification methods, nucleic acid extraction from specimens still needs to be performed in a laboratory. To facilitate this step, we exploited the strong affinity of biotin-streptavidin binding by functionalizing streptavidin-coated magnetic beads with biotinylated oligonucleotide capture probes to efficiently capture genotype II ASFV DNA directly from crude clinical samples. The captured DNA is suitable for detection using real-time quantitative PCR (qPCR) and recombinase polymerase amplification (RPA). In this study, ASFV DNA was efficiently captured from swine feces, serum, and tissue samples. Both DNA-capture-assisted qPCR and RPA-based detection methods have a limit of detection (LOD) of 102 copies/µl, which is comparable to those of commercially available kits. In addition, an RPA-SYBR Green I method was developed for the immediate visual detection of ASFV DNA, which is time-saving and efficient for resource-limited field settings. In summary, a rapid, versatile, sequence-specific DNA capture method was developed to efficiently capture ASFV DNA from swine clinical samples and subsequent detection by qPCR and RPA, which has the potential to be used for robust screening and surveillance of ASFV and in point-of-care (POC) diagnostics.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas , Estreptavidina/genética , ADN Viral/genética , Fenómenos Magnéticos , Sensibilidad y Especificidad
15.
Biochem Biophys Res Commun ; 646: 8-18, 2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36696754

RESUMEN

A severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) surrogate virus neutralization test (sVNT) was used to determine the degree of inhibition of binding between human angiotensin converting enzyme 2 (hACE2) and the receptor binding domain (RBD) of spike protein by neutralizing antibodies in a biosafety level 2 facility. Here, to improve the sensitivity and specificity of the commercial sVNT, we developed a new biotin based sVNT using biotinylated RBD and HRP conjugated streptavidin instead of HRP conjugated RBD for direct detection in an ELISA assay that strongly correlated to the FDA approved cPass sVNT commercial kit (R2 = 0.8521) and pseudo virus neutralization test (R2 = 0.9006) (pVNT). The biotin based sVNT was evaluated in 535 postvaccination serum samples corresponding to second and third boosts of AZD1222 and BNT162b2 vaccines of the wild type strain. We confirmed that the neutralizing antibodies against SARS-CoV-2 variants in second vaccination sera decreased after a median of 141.5 days. Furthermore, vaccination sera from BNT162b2-BNT162b2 vaccines maintained neutralizing antibodies for longer than those of AZD1222 only vaccination. In addition, both vaccines maintained high neutralizing antibodies in third vaccination sera against Omicron BA.2 after a median of 27 days, but neutralizing antibodies significantly decreased after a median of 141.5 days. Along with the cPass sVNT commercial kit, biotin based sVNTs may also be suitable for specifically detecting neutralizing antibodies against multiple SARS-CoV-2 variants; however, to initially monitor the neutralizing antibodies in vaccinated sera using high throughput screening, conventional PRNT could be replaced by sVNT to circumvent the inconvenience of a long test time.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Biotina , Vacuna BNT162 , ChAdOx1 nCoV-19 , Pruebas de Neutralización , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
16.
Mol Cells ; 45(12): 896-910, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36324270

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and potentially fatal virus. So far, most comprehensive analyses encompassing clinical and transcriptional manifestation have concentrated on the lungs. Here, we confirmed evident signs of viral infection in the lungs and spleen of SARS-CoV-2-infected K18-hACE2 mice, which replicate the phenotype and infection symptoms in hospitalized humans. Seven days post viral detection in organs, infected mice showed decreased vital signs, leading to death. Bronchopneumonia due to infiltration of leukocytes in the lungs and reduction in the spleen lymphocyte region were observed. Transcriptome profiling implicated the meticulous regulation of distress and recovery from cytokine-mediated immunity by distinct immune cell types in a time-dependent manner. In lungs, the chemokine-driven response to viral invasion was highly elevated at 2 days post infection (dpi). In late infection, diseased lungs, post the innate immune process, showed recovery signs. The spleen established an even more immediate line of defense than the lungs, and the cytokine expression profile dropped at 7 dpi. At 5 dpi, spleen samples diverged into two distinct groups with different transcriptome profile and pathophysiology. Inhibition of consecutive host cell viral entry and massive immunoglobulin production and proteolysis inhibition seemed that one group endeavored to survive, while the other group struggled with developmental regeneration against consistent viral intrusion through the replication cycle. Our results may contribute to improved understanding of the longitudinal response to viral infection and development of potential therapeutics for hospitalized patients affected by SARS-CoV-2.


Asunto(s)
COVID-19 , Virosis , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Citocinas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Pulmón , Ratones Transgénicos , SARS-CoV-2 , Bazo/metabolismo , Transcriptoma
17.
Dis Model Mech ; 15(11)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222118

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, causes life-threatening disease. This novel coronavirus enters host cells via the respiratory tract, promoting the formation of severe pulmonary lesions and systemic disease. Few animal models can simulate the clinical signs and pathology of COVID-19 patients. Diverse preclinical studies using K18-hACE2 mice and Syrian golden hamsters, which are highly permissive to SARS-CoV-2 in the respiratory tract, are emerging; however, the systemic pathogenesis and cellular tropism of these models remain obscure. We intranasally infected K18-hACE2 mice and Syrian golden hamsters with SARS-CoV-2, and compared the clinical features, pathogenesis, cellular tropism and infiltrated immune-cell subsets. In K18-hACE2 mice, SARS-CoV-2 persistently replicated in alveolar cells and caused pulmonary and extrapulmonary disease, resulting in fatal outcomes. Conversely, in Syrian golden hamsters, transient SARS-CoV-2 infection in bronchial cells caused reversible pulmonary disease, without mortality. Our findings provide comprehensive insights into the pathogenic spectrum of COVID-19 using preclinical models.


Asunto(s)
COVID-19 , Cricetinae , Ratones , Animales , Mesocricetus , SARS-CoV-2 , Modelos Animales de Enfermedad , Pulmón/patología , Ratones Transgénicos
18.
Viruses ; 14(7)2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35891370

RESUMEN

Coronaviruses are well known as a diverse family of viruses that affect a wide range of hosts. Since the outbreak of severe acute respiratory syndrome, a variety of bat-associated coronaviruses have been identified in many countries. However, they do not represent all the specific geographic locations of their hosts. In this study, full-length genomes representing newly identified bat coronaviruses in South Korea were obtained using an RNA sequencing approach. The analysis, based on genome structure, conserved replicase domains, spike gene, and nucleocapsid genes revealed that bat Alphacoronaviruses are from three different viral species. Among them, the newly identified B20-97 strain may represent a new putative species, closely related to PEDV. In addition, the newly-identified MERS-related coronavirus exhibited shared genomic nucleotide identities of less than 76.4% with other Merbecoviruses. Recombination analysis and multiple alignments of spike and RBD amino acid sequences suggested that this strain underwent recombination events and could possibly use hDPP4 molecules as its receptor. The bat SARS-related CoV B20-50 is unlikely to be able to use hACE2 as its receptor and lack of an open reading frame in ORF8 gene region. Our results illustrate the diversity of coronaviruses in Korean bats and their evolutionary relationships. The evolution of the bat coronaviruses related ORF8 accessory gene is also discussed.


Asunto(s)
Alphacoronavirus , Quirópteros , Coronaviridae , Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Alphacoronavirus/genética , Animales , Betacoronavirus/genética , Coronaviridae/genética , Genoma Viral , Genómica , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Filogenia , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética
19.
Arch Virol ; 167(11): 2133-2142, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35821149

RESUMEN

Mammalian orthoreoviruses (MEVs) that can cause enteric, respiratory, and encephalitic infections have been identified in a wide variety of mammalian species. Here, we report a novel MRV type 1 strain detected in Miniopterus schreibersii that may have resulted from reassortment events. Using next-generation RNA sequencing (RNA-seq), we found that the ratios of the RNA levels of the 10 reovirus segments in infected cells were constant during the late stages of infection. We also discovered that the relative abundance of each segment differed. Notably, the relative abundance of M2 (encoding the µ1 protein) and S4 (encoding the σ3 protein) RNAs was higher than that of the others throughout the infection. Additionally, massive junctions were identified. These results support the hypothesis that defective genome segments are generated and that cross-family recombination occurs. These data may further the study of gene function, viral replication, and virus evolution.


Asunto(s)
Quirópteros , Orthoreovirus , Reoviridae , Animales , Genoma Viral , Orthoreovirus/genética , ARN , RNA-Seq , Reoviridae/genética
20.
Transbound Emerg Dis ; 69(5): e3297-e3304, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35648595

RESUMEN

The ongoing coronavirus disease 2019 pandemic and its overlap with the influenza season lead to concerns over severe disease caused by the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infections. Using a Syrian hamster co-infection model with SARS-CoV-2 and the pandemic influenza virus A/California/04/2009 (H1N1), we found (a) more severe disease in co-infected animals, compared to those infected with influenza virus alone but not SARS-CoV-2 infection alone; (b) altered haematological changes in only co-infected animals and (c) altered influenza virus tropism in the respiratory tracts of co-infected animals. Overall, our study revealed that co-infection with SARS-CoV-2 and influenza virus is associated with altered disease severity and tissue tropism, as well as haematological changes, compared to infection with either virus alone.


Asunto(s)
COVID-19 , Coinfección , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Enfermedades de los Roedores , Animales , COVID-19/veterinaria , Coinfección/veterinaria , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2 , Tropismo Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...