Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(51): eade1383, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563156

RESUMEN

Radical-ionic metal-organic frameworks (MOFs) have unique optical, magnetic, and electronic properties. These radical ions, forcibly formed by external stimulus-induced redox processes, are structurally unstable and have short radical lifetimes. Here, we report two naphthalenediimide-based (NDI-based) Ca-MOFs: DGIST-6 and DGIST-7. Neutral DGIST-6, which is generated first during solvothermal synthesis, decomposes and is converted into radical-anionic DGIST-7. Cofacial (NDI)2•- and (NDI)22- dimers are effectively stabilized in DGIST-7 by electron delocalization and spin-pairing as well as dimethylammonium counter cations in their pores. Single-crystal x-ray diffractometry was used to visualize redox-associated structural transformations, such as changes in centroid-to-centroid distance. Moreover, the unusual rapid reduction of oxidized DGIST-7 into the radical anion upon infrared irradiation results in effective and reproducible photothermal conversion. This study successfully illustrated the strategic use of in situ prepared cofacial ligand dimers in MOFs that facilitate the stabilization of radical ions.

2.
Water Res ; 222: 118864, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35870393

RESUMEN

Environmental damage from serious nuclear accidents should be urgently restored, which needs the removal of radioactive species. Radioactive iodine isotopes are particularly problematic for human health because they are released in large amounts and retain radioactivity for a substantial time. Herein, we prepare platinum-coated iron nanoparticles (Fe@Pt) as a highly selective and reusable adsorbent for iodine species, i.e., iodide (I-), iodine (I2), and methyl iodide (CH3I). Fe@Pt selectively separates iodine species from seawater and groundwater with a removal efficiency ≥ 99.8%. The maximum adsorption capacity for the iodine atom of all three iodine species was determined to be 25 mg/g. The magnetic properties of Fe@Pt allow for the facile recovery and reuse of Fe@Pt, which remains stable with high efficiency (97.5%) over 100 uses without structural and functional degradation in liquid media. Practical application to the removal of radioactive 129I and feasibility for scale-up using a 20 L system demonstrate that Fe@Pt can function as a reusable adsorbent for the selective removal of iodine species. This systematic procedure is a standard protocol for designing highly active adsorbents for the clean separation and removal of various chemical species dissolved in wastewater.


Asunto(s)
Yodo , Neoplasias de la Tiroides , Contaminantes Químicos del Agua , Adsorción , Humanos , Yoduros , Radioisótopos de Yodo/química , Agua/química , Contaminantes Químicos del Agua/química
3.
Chem Commun (Camb) ; 55(79): 11952-11955, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31531450

RESUMEN

Pd@Pt core-shell nanocubes with a partially covered Pt shell on the Pd nanocubes were synthesized by a direct seed-mediated growth method without a washing process. The FAO activity of Pd@Pt 0.4 at% was 4.3 times and 2.2 times higher than that of Pd cubes and commercial Pt/C, respectively.

4.
Nanoscale ; 8(30): 14593-9, 2016 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-27432650

RESUMEN

A novel reverse microemulsion strategy was developed to asymmetrically encapsulate metal-oxide nanoparticles in silica by exploiting the self-catalytic growth of aminosilane-containing silica at a single surface site. This strategy produced various colloidal Janus nanoparticles, including Au/Fe3O4@asy-SiO2, which were converted to an Au-containing silica nanosphere, Au@con-SiO2, by reductive Fe3O4 dissolution. The use of Au@con-SiO2 as a metal-growing nanoreactor allowed the templated synthesis of various noble-metal nanocrystals, including a hollow dendritic Pt nanoshell which exhibits significantly better electrocatalytic activities for the oxygen reduction reaction than commercial Pt/C catalysts.

5.
Small ; 11(37): 4884-93, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26136254

RESUMEN

The exploitation of nanoconfined conversion of Au- and Pt-containing binary nanocrystals for developing a controllable synthesis of surfactant-free AuPt nanocrystals with enhanced formic acid oxidation (FAO) activity is reported, which can be stably and evenly immobilized on various support materials to diversify and optimize their electrocatalytic performance. In this study, an atomic layer of Pt(2+) species is discovered to be spontaneously deposited in situ on the Au nanocrystal generated from a reverse-microemulsion solution. The resulting Au/Pt(2+) nanocrystal thermally transforms into a reduced AuPt alloy nanocrystal during the subsequent solid-state conversion process within the SiO2 nanosphere. The alloy nanocrystals can be isolated from SiO2 in a surfactant-free form and then dispersedly loaded on the carbon sphere surface, allowing for the production of a supported electrocatalyst that exhibits much higher FAO activity than commercial Pt/C catalysts. Furthermore, by involving Fe3O4 nanocrystals in the conversion process, the AuPt alloy nanocrystals can be grown on the oxide surface, improving the durability of supported metal catalysts, and then uniformly loaded on a reduced graphene oxide (RGO) layer with high electroconductivity. This produces electrocatalytic AuPt/Fe3O4/RGO nanocomposites whose catalyst-oxide-graphene triple-junction structure provides improved electrocatalytic properties in terms of both activity and durability in catalyzing FAO.

6.
ACS Appl Mater Interfaces ; 7(13): 7129-35, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25790169

RESUMEN

The characteristic properties of metal surfaces, i.e., wettability and surface-enhanced Raman scattering (SERS) activity, have been the subject of intensive research because of their useful applications. In the present work, we report a simple electrodeposition of nanoflake Pd structures onto clean Au surfaces without the use of additives. The fine structure of the nanoflake Pd surfaces was regulated by controlling the deposition charge, and the effect of the structural variations on the wettability and SERS activity was examined. The wettability of nanoflake Pd structures in terms of water contact angle was closely related to the fine structures of Pd deposits and their surface roughness. The SERS activity of the nanoflake Pd surfaces was highly dependent on the presence of sharp edge sites on the Pd structures. Well-defined nanoflake Pd structures prepared using a deposition charge of 0.04 C exhibited superhydrophobic natures and reproducible SERS activity. The effect of the metal surface structures on the wettability and the SERS activity demonstrated in this work provides insight into the fabrication of functional metal nanostructures.

7.
ACS Nano ; 8(5): 4510-21, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24754512

RESUMEN

This paper reports the findings of our efforts toward gaining a more complete understanding and utilization of galvanic replacement reactions involving manganese oxide with noble metals. It was revealed that the site of metal deposition is significantly affected by the variable oxidation state of manganese oxide. The use of carbon-encapsulated MnO nanoparticles as a reaction template led to metal growth specifically on the outermost surfaces of the carbon shells rather than on the MnO cores, which allowed for the selective decoration of the external surfaces of hollow carbon nanospheres with catalytic nanocrystals of various noble metals, including Pt, Pd, Rh, and Ir. By rearranging the sequence between carbon-shell coating and galvanic replacement processes, the deposited metal nanocrystals could be placed on the interior surfaces of hollow carbon nanospheres and, moreover, separately on the internal and the external surfaces, which may enable the respective control of the catalytic functionalities of each specific surface.

8.
ACS Appl Mater Interfaces ; 6(4): 3002-7, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24443816

RESUMEN

We report a simple one-step electrodeposition of triangular Pd rod nanostructures on clean Au substrates without additives. Scanning electron microscopy, transmission electron microscopy, and electrochemical techniques were utilized to characterize the structural features of the triangular Pd rod nanostructures. The regulation of the electrodeposition rate by optimizing the electrolyte concentration and applied potential was critical for the anisotropic growth of Pd in the vertical direction. The triangular Pd rod structures exhibited electrocatalytic activities for oxygen reduction and methanol oxidation reactions. These surfaces could be effectively utilized as reproducible surface-enhanced Raman scattering (SERS) active substrates to produce stable SERS signals under electrochemical systems. A simple preparation of well-defined triangular Pd rod structures would allow new opportunities in various areas utilizing Pd-based nanostructured surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...