Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 11: 1223967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744056

RESUMEN

Literature reports the chemical constituent yields of electronic nicotine delivery systems (ENDS) aerosol collected using a range of aerosol collection strategies. The number of puffs to deplete an ENDS product varies widely, but collections often consist of data from the first 50-100 puffs. However, it is not clear whether these discrete puff blocks are representative of constituent yields over the life of a pod. We aimed to assess the effect of differing aerosol collection strategies on reported yields for select chemical constituents in the aerosol of closed pod-based ENDS products. Constituents analyzed were chosen to reflect important classes of compounds from the Final Premarket Tobacco Product Application Guidance. Yields were normalized to total device mass loss (DML). Collection strategies that consisted of partial pod collection were valid for determining yields of constituents whose DML normalized yields were consistent for the duration of pod life. These included primary aerosol constituents, such as propylene glycol, glycerol, and nicotine, and whole pod yields could be determined from initial puff blocks. However, changes were observed in the yields of some metals, some carbonyl compounds, and glycidol over pod life in a chemical constituent and product dependent manner. These results suggest that collection strategies consisting of initial puff block collections require validation per chemical constituent/product and are not appropriate for chemical constituents with variable yields over pod life. Whole pod collection increased sensitivity and accuracy in determining metal, carbonyl, and glycidol yields compared to puff block-based collection methodologies for all products tested.

3.
J Chromatogr A ; 1653: 462376, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34293516

RESUMEN

Closed form expressions for the prediction of retention times and peak widths for gradient liquid chromatography are particularly useful in understanding, rationalizing and optimizing separations. These expressions are obtained by integrating differential equations, in conjunction with a model of the variation of the retention factor as a function of mobile phase composition. Two of these models, the linear solvent strength (LSS) model and the Neue-Kuss (NK) model are explored in the present work. Here, we expand on these closed form expressions to account for effects of sample volume overload and a mismatch between the sample solvent and the initial mobile phase composition for the gradient. We show that there have been errors in expressions reported in the literature, and we have evaluated the accuracy of the predictions from the closed form expressions reported here using a recently developed liquid chromatography simulator. The expressions assume a constant plate height and consider elution across four zones of the gradient profile - elution in the sample solvent, elution in the initial (isocratic) mobile phase caused by the gradient delay volume, elution during a linear gradient, and elution post-gradient at the final (isocratic) mobile phase composition. The expressions generally give reasonably accurate predictions for retention times and peak widths, except for cases where the solute elutes during transitions between the different zones. The average magnitude of the prediction errors for retention time and peak width relative to simulation were 0.093% and 0.40% for the LSS expressions for ten amphetamine solutes at 36 different separation conditions, and 0.22% and 1.8% for the NK expressions for eight alkylbenzene solutes at 36 different separation conditions, respectively.


Asunto(s)
Cromatografía Liquida , Simulación por Computador , Solventes , Cromatografía Liquida/métodos , Indicadores y Reactivos , Modelos Lineales , Solventes/química
4.
J Chromatogr A ; 1564: 128-136, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-29937121

RESUMEN

A previously developed liquid chromatographic simulator (see parts I and II) [1-3] is extended to allow for simulations of stationary phase gradients with isocratic and gradient mobile phases. Gradient stationary phases have recently been proposed as means of engineering unique chromatographic selectivities. In the present work, the simulator provides retention times and peak widths that agree with closed form theory for a linear gradient in retention factor and provides accurate retention time predictions for experimentally implemented continuous and discontinuous gradients. Calculation of discontinuous gradients implemented using the commercially available POPLC system have shown good agreement with experiment, with the largest deviation of the simulated retention time from experiment of 4.5%. In addition, simulations of a novel continuous amine gradient column show good agreement with experiment, and give insights into synergistic interactions on column. With the exception of solutes that show evidence of synergistic interactions, the simulated retention times are in agreement with the 95% confidence limits of the experimental values.


Asunto(s)
Cromatografía Liquida/métodos , Simulación por Computador , Aminas/química , Anfetaminas/química , Indicadores y Reactivos , Dióxido de Silicio/química , Solventes/química , Factores de Tiempo
5.
J Chromatogr A ; 1523: 162-172, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-28747254

RESUMEN

An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension (1D) column into the second dimension (2D) column leads to severe 2D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1D mobile phase overwhelms the 2D column with each injection of 1D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80µL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods.


Asunto(s)
Cromatografía Liquida , Simulación por Computador , Indicadores y Reactivos , Compuestos Orgánicos , Solventes/química
7.
J Chromatogr A ; 1457: 41-9, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27345210

RESUMEN

High-performance liquid chromatography (HPLC) simulators are effective method development tools. The goal of the present work was to design and implement a simple algorithm for simulation of liquid chromatographic separations that allows for characterization of the effect of injection solvent mismatch and injection solvent volume overload. The simulations yield full analyte profiles during solute migration and at elution, which enable a thorough physical understanding of the effects of method variables on chromatographic performance. The Craig counter-current distribution model (the plate model) is used as the basis for simulation, where a local retention factor is assigned for each spatial and temporal element within the simulation. The algorithm, which is an adaptation of an approach originally described by Czok and Guiochon (Ref. [10]), is sufficiently flexible to allow the use of either linear (e.g., Linear Solvent Strength Theory) or non-linear models of solute retention (e.g., Neue-Kuss (Ref. [36])). In this study, both types of models were used, one for simulating separations of a homologous series of alkylbenzenes, and the other for separations of selected amphetamines. The simulation program was validated first by comparison of simulated retention times and peak widths for five amphetamines to predictions obtained using linear solvent strength (LSS) theory, and to results from experimental separations of these compounds. The simulated retention times for the amphetamines agreed within 0.02% and 2.5% compared to theory and experiment, respectively. Secondly, the program was evaluated for simulating the case where there is a compositional mismatch between the mobile phase at the column inlet and the injection solvent (i.e., the sample matrix). This work involved alkylbenzenes, and retention time and peak width predictions from simulations were within 1.5 and 6.0% of experimental values, respectively, even without correction for extra-column dispersion. The issues of sample/eluent solvent mismatch and solvent volume overload are especially important when considering the challenges of transferring eluent from the first to the second dimension in comprehensive two-dimensional liquid chromatography.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Solventes/química , Modelos Teóricos , Dinámicas no Lineales
8.
Anal Chem ; 88(11): 5941-9, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27203513

RESUMEN

Stationary phase gradients on monolithic silica columns have been successfully and reproducibly prepared and characterized with comparisons made to uniformly modified stationary phases. Stationary phase gradients hold great potential for use in liquid chromatography (LC), both in terms of simplifying analysis as well as providing novel selectivity. In this work, we demonstrate the creation of a continuous stationary phase gradient on in-house synthesized monolithic columns by infusing an aminoalkoxysilane solution through the silica monoliths via controlled rate infusion. The presence of amine and its distribution along the length of gradient and uniformly modified columns were assessed via X-ray photoelectron spectroscopy (XPS). XPS showed a clear gradient in surface coverage along the length of the column for the gradient stationary phases while a near uniform distribution on the uniformly modified stationary phases. To demonstrate the application of these gradient stationary phases, the separations of both nucleobases and weak acids/weak bases on these gradient stationary phases have been compared to uniformly modified and unmodified silica columns. Of particular note, the retention characteristics of 11 gradient columns, 5 uniformly modified columns, and 5 unmodified columns have been tested to establish the reproducibility of the synthetic procedures. Standard deviations of the retention factors were in the range from 0.06 to 0.5, depending on the analyte species. We show that selectivity is achieved with the stationary phase gradients that are significantly different from either uniformly modified amine or unmodified columns. These results indicate the significant promise of this strategy for creating novel stationary phases for LC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...