Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(10): 7558-7569, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38420914

RESUMEN

Water electrolysis is emerging as a promising renewable-energy technology for the green production of hydrogen, which is a representative and reliable clean energy source. From economical and industrial perspectives, the development of earth-abundant non-noble metal-based and bifunctional catalysts, which can simultaneously exhibit high catalytic activities and stabilities for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), is critical; however, to date, these types of catalysts have not been constructed, particularly, for high-current-density water electrolysis at the industrial level. This study developed a heterostructured zero-dimensional (0D)-one-dimensional (1D) PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF)-Ni3S2 as a self-supported catalytic electrode via interface and morphology engineering. This unique heterodimensional nanostructure of the PBSCF-Ni3S2 system demonstrates superaerophobic/superhydrophilic features and maximizes the exposure of the highly active heterointerface, endowing the PBSCF-Ni3S2 electrode with outstanding electrocatalytic performances in both HER and OER and exceptional operational stability during the overall water electrolysis at high current densities (500 h at 500 mA cm-2). This study provides important insights into the development of catalytic electrodes for efficient and stable large-scale hydrogen production systems.

2.
Ultrason Sonochem ; 95: 106413, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37088026

RESUMEN

Lactic acid bacteria (LAB) are being used for probiotic and starter cultures to prevent global damage to microbial cells. To retain the benefits of LAB in the commercially used powdered form, highly efficient cryoprotective agents are required during the manufacturing process. This study suggests a novel cryoprotective agent derived from Jerusalem artichoke (JA; Helianthus tuberous L.) and describes the mechanism of cryoprotective effect improvement by sonication treatment. The cryoprotective effect of JA extract was verified by examining the viability of Leuconostoc mesenteroides WiKim33 after freeze-drying (FD). Sonication of JA extract improved the cryoprotective effect. Sonication reduced fructose and glucose contents, which increased the induction of critical damage during FD by 15.84% and 46.81%, respectively. The cryoprotective effects of JA and sonication-treated JA extracts were determined using the viable cell count of Leu. mesenteroides WiKim33. Immediately after FD and storage for 24 weeks, the viability of Leu. mesenteroides WiKim33 with JA extract was 82.8% and 76.3%, respectively, while that of the sonication-treated JA extract was 95.2% and 88.8%, respectively. Our results show that reduction in specific monosaccharides was correlated with improved cryoprotective effect. This study adopted sonication as a novel treatment for improving the cryoprotective effect and verified its efficiency.


Asunto(s)
Helianthus , Lactobacillales , Leuconostoc mesenteroides , Crioprotectores , Helianthus/química , Monosacáridos , Extractos Vegetales/farmacología
3.
J Microbiol Biotechnol ; 33(1): 75-82, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36517044

RESUMEN

Lactic acid bacteria (LAB) isolated from kimchi (a traditional Korean dish typically made of fermented cabbage) can provide various health benefits, including anti-obesity, antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. In this study, we examined the antimicrobial and immunomodulatory effects of Lactiplantibacillus plantarum WiKim0125 cultured in de Man, Rogosa, and Sharpe (MRS) medium containing vegetable waste. Live bacterial cells were eliminated via supernatant filtration or heat treatment. The cell-free supernatant (CFS) obtained from culture broth containing kimchi cabbage waste (KCW), cabbage waste (CW), or onion waste (OW) showed significantly higher antimicrobial activity against skin pathogens (Propionibacterium acnes and Staphylococcus aureus) and foodborne pathogens (Escherichia coli and Salmonella typhimurium), with inhibition zones ranging between 4.4 and 8.5 mm, compared to that in conventional MRS medium (4.0-7.3 mm). In lipopolysaccharide-stimulated RAW264.7 cells, both supernatant and heat-inactivated Lb. plantarum WiKim0125 from culture media containing KCW and CW suppressed the production of inflammatory cytokines (72.8% and 49.6%, respectively) and nitric oxide (62.2% and 66.7%, respectively) without affecting cell viability. These results indicate that vegetable waste can potentially increase the antimicrobial and immunoregulatory potency of LAB while presenting a molecular basis for applying postbiotics to health products.


Asunto(s)
Antiinfecciosos , Brassica , Alimentos Fermentados , Lactobacillales , Humanos , Verduras/microbiología , Lactobacillaceae , Brassica/microbiología
4.
J Microbiol Biotechnol ; 32(12): 1599-1604, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36330746

RESUMEN

Storage stability of freeze-dried lactic acid bacteria is a critical factor for their cost-effectiveness. Long-term storage of lactic acid bacteria enables microbial industry to reduce distribution costs. Herein, we investigated the effect of cold adaptation under supercooling conditions at -5°C on the viability of Leuconostoc mesenteroides WiKim32 during the freeze-drying process and subsequent storage. Cold adaptation increased the thickness of exopolysaccharides (EPS) and improved the viability of freeze-dried Leu. mesenteroides WiKim32. Compared to non-adapted cells, cold-adapted cells showed a 35.4% increase in EPS thickness under supercooling conditions. The viability of EPS-hydrolyzed cells was lower than that of untreated cells, implying that EPS plays a role in protection during the freeze-drying process. Cold adaptation increased the storage stability of freeze-dried Leu. mesenteroides WiKim32. Fifty-six days after storage, the highest viability (71.3%) was achieved with cold adaptation at -5°C. When EPS-containing broth was added prior to the freeze-drying process, the viability further increased to 82.7%. These results imply that cold adaptation by supercooling pretreatment would be a good strategy for the long-term storage of Leu. mesenteroides WiKim32.


Asunto(s)
Lactobacillales , Leuconostoc mesenteroides , Liofilización/métodos , Leuconostoc
5.
J Microbiol Biotechnol ; 32(8): 960-966, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-35879271

RESUMEN

Lactic acid bacteria (LAB) exert antagonistic activity against root-knot nematodes, mainly by producing organic acids via carbohydrate fermentation. However, they have not yet been used for root-knot nematode (Meloidogyne incognita) control owing to a lack of economic feasibility and effectiveness. In this study, we aimed to isolate organic acid-producing LAB from kimchi (Korean traditional fermented cabbage) and evaluated their nematicidal activity. Among the 234 strains isolated, those showing the highest nematicidal activity were selected and identified as Lactiplantibacillus plantarum WiKim0090. Nematicidal activity and egg hatch inhibitory activity of WiKim0090 culture filtrate were dose dependent. Nematode mortality 3 days after treatment with 2.5% of the culture filtrate was 100%, with a 50% lethal concentration of 1.41%. In pot tests, the inhibitory activity of an L. plantarum WiKim0090-copper sulfate mixture on gall formation increased. Compared to abamectin application, which is a commercial nematicide, a higher control value was observed using the WiKim0090-copper sulfate mixture, indicating that this combination can be effective in controlling the root-knot nematode.


Asunto(s)
Tylenchoidea , Animales , Antinematodos , Sulfato de Cobre
6.
Sci Rep ; 12(1): 423, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013435

RESUMEN

Metarhizium anisopliae is a promising alternative to chemical pesticides against pine wilt disease caused by Bursaphelenchus xylophilus. Herein, we investigated the efficacy of modified atmosphere packaging (MAP) to prolong the shelf-life of the M. anisopliae conidia. The effects of various conditions on its stability were also examined. M. anisopliae-inoculated millet grains were treated in a MAP system with different packaging materials (polypropylene, PP; polyethylene terephthalate, PET; ethylene vinyl alcohol, EVOH), gas compositions (high CO2 atmosphere, ≈ 90%; high O2 atmosphere, > 95%; high N2 atmosphere, > 95%; 30% CO2 + 70% N2; 50% CO2 + 50% N2; 70% CO2 + 30% N2), and storage temperatures (4 and 25 °C). Results revealed EVOH film as the best for the preservation of gases at all concentrations for 28 days. MAP treatment in the high-barrier EVOH film under an atmosphere of 30% CO2 + 70% N2 achieved 80.5% viability of dried conidia (7.4% moisture content), with 44.2-64.9% viability recorded with the other treatments. Cold storage for technical concentrates formulation promoted extension of shelf-life of MAP-treated conidia. These results imply that MAP under optimized conditions could enhance the shelf-life of fungus-based biopesticides in fungus-colonized substrates formulations.

7.
ACS Omega ; 6(12): 8171-8178, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33817476

RESUMEN

Bacterial exopolysaccharides (EPSs) are important alternatives to plant polysaccharides in fermented products and exhibit antioxidant activity, which is particularly desirable for functional foods. This study evaluated the use of spent media wastewater (SMW) derived from kimchi fermentation for the production of an EPS and analyzed the characterization and antioxidant activity of the resulting EPS. The EPS concentration and conversion yields of sequential purification were 7.7-9.0 g/L and 38.6-45.1%, respectively. Fourier transform infrared spectra and NMR spectra indicated that the EPS was a linear glucan with α-(1 → 6) linkages. The EPS also exhibited thermal tolerance to high temperatures. In vitro antioxidant activity analyses indicated the scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, thiobarbituric acid reactance (TBAR), and ferric ion reducing antioxidant power (FRAP) values of 71.6-79.1, 28.2-33.0%, and 0.04-0.05 mM FeCl3, respectively. These results reveal that the EPS extracted from SMW has potential as a thermally tolerant, nontoxic, and natural antioxidant for industrial applications.

8.
ACS Omega ; 6(51): 35334-35341, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34984265

RESUMEN

Lactic acid bacteria produce various bioactive compounds widely used in human healthcare. However, studies on cryoprotective agents for the efficient storage of lactic acid bacteria after freeze-drying are still lacking. Here, we report the shelf-life extension effects of a highly efficient and eco-friendly cryoprotective agent and a cold adaptation method on Lactobacillus sakei WiKim31. Cold adaptation of L. sakei WiKim31 increased exopolysaccharide expression in response to abiotic stress. As a possible cryoprotective agent, the citrus byproduct (CP) contains a variety of sugars, amino acids, and cations, exhibiting high antioxidant activity. L. sakei WiKim31 powders formulated with CP or a mixture of soy powder (SP) and CP exhibited high cell viability at 58.3 and 76.3%, respectively, after 56 days of storage. These results indicate that CP can be efficiently used as a novel cryoprotective agent either alone or in combination with SP to improve the storage conditions of L. sakei WiKim31 and preserve it longer.

9.
ACS Omega ; 5(39): 25312-25318, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33043210

RESUMEN

Pine wilt disease, caused by Bursaphelenchus xylophilus (pine wood nematode), leads to severe environmental and economic damage. Here, we report the results of experiments on the biological control of pine wilt disease through termination of the insect vector of the nematode and the mechanism of the insecticidal action of Metarhizium anisopliae JEF-279 against Monochamus alternatus (Japanese pine sawyer). A combined treatment with a fungal conidia suspension and a fungal protease-containing culture filtrate caused 75.8% mortality of the insect vector. Additionally, the presence of destruxins was confirmed in the dead Japanese pine sawyer adults, and half of the 10 protein spots in proteomic analysis were identified as an actin related to muscle contraction. Based on proteomic and microscopic analyses, the infection cycle of the Japanese pine sawyer by M. anisopliae JEF-279 was inferred to proceed in the following sequence: (1) host adhesion and germination, (2) epicuticle degradation, (3) growth as blastospore, (4) killing by various fungal toxins (insecticidal metabolites), (5) immune response as defense mechanism, and (6) hyphal extrusion and conidiation. Consequently, the combined fungal conidia suspension and protease-containing culture filtrate treatment may be applied as an insecticidal agent, and flaccid paralysis is likely a major mechanism underlying the insecticidal action of M. anisopliae JEF-279 on host insects.

10.
Waste Manag ; 118: 585-590, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33010689

RESUMEN

The present work describes the feasibility of coffee residue extracts as cryoprotective agents in the storage stability of freeze-dried lactic acid bacteria. Coffee residue extracts were extracted from coffee residue, produced after coffee extraction for coffee powder and instant coffee preparation, using an autoclave. Leuconostoc mesenteroides WiKim32 was selected to evaluate the ability of coffee residue extracts to protect bacteria during freeze-dried storage. The storage stability of freeze-dried Leu. mesenteroides WiKim32 with coffee residue extracts was comparable to those with commercial cryoprotective agents. Coffee residue extracts contributed to storage stability immediately after freeze-drying (61.2%) and subsequent storage (48.7%). Our data indicate that the protective effect of the coffee residue extracts is associated with ions, carbohydrates, and phenolic compounds. Coffee residue extracts are feasible materials, which can reduce the storage and distribution costs compared to commercial agents currently available.


Asunto(s)
Café , Lactobacillales , Liofilización , Esperanza de Vida , Polvos
11.
J Food Sci ; 85(10): 3638-3643, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32856293

RESUMEN

Shrimps cause a significant part of crustacea-related allergies. It is used in processed foods, including fermented Korean foods, such as kimchi. Even low amounts of shrimp allergens can provoke reactions in consumers allergic to shrimp. Accurate food labeling is the most effective means of preventing the consumption of allergenic ingredients. To validate labeling compliance and minimize the risk of cross-contaminations, the effectiveness of methodologies used for the detection of allergens in foods should be compared. Here, seven commercial kits, based on quantitative real-time polymerase chain reaction (PCR) or enzyme-linked immunosorbent assay (ELISA), were assessed for their ability to detect the presence of shrimp allergens in food. Our results showed that SureFood real-time PCR kit and Ridascreen ELISA kit had the highest recovery, whereas five other kits underperformed in the determination of allergen content of kimchi and its ingredients. The variation in recovery among the kits depended on the limit of detection and reactivity to the shrimp allergens, tropomyosin, and sarcoplasmic calcium-binding protein. PRACTICAL APPLICATION: This research confirms the performance of commercial kits to detect the presence of shrimp allergens in kimchi, and demonstrates that the sensitivity of these kits depends on reactivity to the specific shrimp allergenic proteins. These results can be used to food allergy labeling and can be applied by the food industry to develop allergen test kits for fermented foods with improved performance.


Asunto(s)
Alérgenos/análisis , Crustáceos/genética , ADN/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Alimentos Fermentados/análisis , Reacción en Cadena de la Polimerasa/métodos , Hipersensibilidad a los Mariscos/prevención & control , Verduras/química , Alérgenos/genética , Alérgenos/inmunología , Animales , Crustáceos/química , Crustáceos/inmunología , Ensayo de Inmunoadsorción Enzimática/economía , Etiquetado de Alimentos , Reacción en Cadena de la Polimerasa/economía , Hipersensibilidad a los Mariscos/inmunología , Verduras/inmunología
12.
Sci Rep ; 9(1): 2400, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787372

RESUMEN

This study was conducted to investigate the effect of salt content during radio-frequency (RF) heating on rate of temperature increase, dielectric properties (DPs), and reduction of pathogens in pistachios. Also, the effect of RF heating on pistachio quality of varying salt content was determined. Pistachios of different salt content (0, 100, and 330 mg sodium/serving) were inoculated with Salmonella enterica and treated in a 27.12-MHz RF heater. The RF heating rate increased when salt content was in the range of 0-100 mg sodium/serving, but there were no significant (P > 0.05) differences in the rate of temperature rise after salt content reached to 100 mg sodium/serving. Both dielectric constant and dielectric loss factor of pistachios increased with rising salt content. Along with increased salt content, RF treatment time required to reduce this pathogen by 4 log CFU/g decreased first and then remained the same above an upper limit of salt content corresponding to the peak heating rate. RF treatment did not significantly (P > 0.05) cause changes in the color and level of lipid oxidation of pistachios. The results of the current study imply that RF heating may be a potential intervention for inactivating foodborne pathogens in pistachios and that the effect of pasteurization is influenced by dielectric loss factor relative to salt content.


Asunto(s)
Pasteurización , Pistacia/metabolismo , Ondas de Radio , Cloruro de Sodio/metabolismo , Recuento de Colonia Microbiana , Microbiología de Alimentos , Calefacción , Viabilidad Microbiana/efectos de la radiación , Pistacia/química , Pistacia/microbiología , Pistacia/efectos de la radiación , Salmonella enterica/patogenicidad , Salmonella enterica/efectos de la radiación , Cloruro de Sodio/efectos de la radiación , Temperatura
13.
ACS Omega ; 4(27): 22438-22444, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31909326

RESUMEN

The biorefining of agricultural waste into green chemicals has clear potential for improving global environmental sustainability. In this study, we evaluated the potential of acetic acid production from carbohydrate feedstock (onion waste, OW) as a more environmentally friendly source than feedstock produced from natural gas. In particular, OW is an ideal feedstock for the biorefining process as it contains a sufficient amount of carbohydrates (69.7%). Five days of the simultaneous saccharification and two-step fermentation (SSTF) process produced acetic acid from OW more efficiently than the simultaneous saccharification and cofermentation (SSCF) process. SSTF produced 19.3 g/L acetic acid and recorded the highest conversion yield (90.5%) from OW (6% substrate loading, w/v). These results suggested that acetic acid can be efficiently and sustainably produced from OW by the SSTF process.

14.
Int J Food Microbiol ; 254: 54-61, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28551280

RESUMEN

This study was conducted to investigate the efficacy of radio-frequency (RF) heating to reduce Salmonella enterica serovars Enteritidis, Typhimurium, and Senftenberg in raw shelled almonds compared to conventional convective heating, and the effect of RF heating on quality by measuring changes in the color and degree of lipid oxidation. Agar-grown cells of three pathogens were inoculated onto the surface or inside of raw shelled almonds using surface inoculation or the vacuum perfusion method, respectively, and subjected to RF or conventional heating. RF heating for 40s achieved 3.7-, 6.0-, and 5.6-log reductions in surface-inoculated S. Enteritidis, S. Typhimurium, and S. Senftenberg, respectively, whereas the reduction of these pathogens following convective heating for 600s was 1.7, 2.5, and 3.7 log, respectively. RF heating reduced internally inoculated pathogens to below the detection limit (0.7 logCFU/g) after 30s. However, conventional convective heating did not attain comparable reductions even at the end of treatment (600s). Color values, peroxide values, and acid values of RF-treated (40-s treatment) almonds were not significantly (P>0.05) different from those of nontreated samples. These results suggest that RF heating can be applied to control internalized pathogens as well as surface-adhering pathogens in raw almonds without affecting product quality.


Asunto(s)
Calefacción/métodos , Nueces/microbiología , Prunus dulcis/microbiología , Ondas de Radio , Salmonella enteritidis/efectos de la radiación , Salmonella typhimurium/efectos de la radiación , Recuento de Colonia Microbiana , Microbiología de Alimentos/métodos , Viabilidad Microbiana/efectos de la radiación , Salmonella enteritidis/crecimiento & desarrollo , Salmonella typhimurium/crecimiento & desarrollo
15.
Food Microbiol ; 64: 172-178, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28213023

RESUMEN

This study was conducted to investigate the efficacy of gamma and electron beam irradiation to inactivate foodborne pathogens in ready-to-bake cookie dough and to determine the effect on quality by measuring color and texture changes. Cookie dough inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, or Listeria monocytogenes was subjected to gamma and electron beam irradiation, with doses ranging from 0 to 3 kGy. As the radiation dose increased, the inactivation effect increased among all tested pathogens. After 3.0 kGy of gamma and electron beam irradiation, numbers of inoculated pathogens were reduced to below the detection limit (1 log CFU/g). The D10-values of E. coli O157:H7, S. Typhimurium, and L. monocytogenes in cookie dough treated with gamma rays were 0.53, 0.51, and 0.71 kGy, respectively, which were similar to those treated by electron beam with the same dose. Based on the D10-value of pathogens in cookie dough, L. monocytogenes showed more resistance to both treatments than did E. coli O157:H7 and S. Typhimurium. Color values and textural characteristics of irradiated cookie dough were not significantly (P > 0.05) different from the control. These results suggest that irradiation can be applied to control pathogens in ready-to-bake cookie dough products without affecting quality.


Asunto(s)
Escherichia coli O157/efectos de la radiación , Irradiación de Alimentos/métodos , Rayos gamma , Listeria monocytogenes/efectos de la radiación , Viabilidad Microbiana , Radiación Ionizante , Salmonella typhimurium/efectos de la radiación , Recuento de Colonia Microbiana , Culinaria , Electrones , Microbiología de Alimentos , Calidad de los Alimentos , Inocuidad de los Alimentos
16.
Int J Food Microbiol ; 176: 15-22, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24555992

RESUMEN

The influence of moisture content during radio-frequency (RF) heating on heating rate, dielectric properties, and inactivation of foodborne pathogens was investigated. The effect of RF heating on the quality of powdered red and black pepper spices with different moisture ranges was also investigated. Red pepper (12.6%, 15.2%, 19.1%, and 23.3% dry basis, db) and black pepper (10.1%, 17.2%, 23.7%, and 30.5% db) inoculated with Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were treated in a RF heating system with 27.12 MHz. The heating rate of the sample was dependent on moisture content up to 19.1% (db) of red pepper and 17.2% (db) of black pepper, but there was a significant decrease in the heating rate when the moisture content was increased beyond these levels. The dielectric properties of both samples increased with a rise in moisture content. As the moisture content increased, treatment time required to reduce E. coli O157:H7 and S. Typhimurium by more than 7 log CFU/g (below the detection limit, 1 log CFU/g) decreased and then increased again without affecting product quality when the moisture content exceeded a level corresponding to the peak heating rate. RF treatment significantly (P<0.05) reduced moisture content of both spices. These results suggest that RF heating can be effectively used to not only control pathogens but also reduce moisture levels in spices and that the effect of inactivation is dependent on moisture content.


Asunto(s)
Escherichia coli O157/efectos de la radiación , Microbiología de Alimentos/métodos , Viabilidad Microbiana/efectos de la radiación , Ondas de Radio , Salmonella typhimurium/efectos de la radiación , Especias/microbiología , Agua , Capsicum/microbiología , Escherichia coli O157/fisiología , Microbiología de Alimentos/normas , Calefacción , Piper nigrum/microbiología , Salmonella typhimurium/fisiología , Análisis de Supervivencia
17.
Int J Food Microbiol ; 166(3): 349-55, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-24021819

RESUMEN

The effect of various conditions on inactivation of foodborne pathogens and quality of fresh-cut lettuce during ultraviolet (254 nm, UVC) radiation was investigated. Lettuce was inoculated with a cocktail of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and treated at different temperatures (4 and 25 °C), distances between sample and lamp (10 and 50 cm), type of exposure (illuminated from one or two sides), UV intensities (1.36 to 6.80 mW/cm²), and exposure times (0.5 to 10 min), sequentially. UV treatment at 25 °C for 1 min achieved 1.45-, 1.35-, and 2.12-log reductions in surface-inoculated E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, whereas the reduction of these pathogens at 4 °C was 0.31, 0.57, and 1.16 log, respectively. UV radiation was most effective when distance from UV lamp to the sample was minimal (10 cm) and radiation area was maximal (two-sided exposure). All UV intensities significantly (P<0.05) reduced the three pathogens after 10 min exposure, but the effect of treatment was correlated with UV intensity and exposure time. Color values and texture parameters of lettuce subjected to UV treatment under the optimum conditions (25 °C, 10 cm between sample and lamp, two-sided exposure, 6.80 mW/cm²) were not significantly (P>0.05) different from those of nontreated samples up to 5 min exposure. However, these qualities significantly (P<0.05) changed at prolonged treatment time. These results suggest that UV radiation under optimized conditions could reduce foodborne pathogens without adversely affecting color quality properties of fresh-cut lettuce.


Asunto(s)
Escherichia coli O157/efectos de la radiación , Microbiología de Alimentos/métodos , Lactuca/microbiología , Listeria monocytogenes/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Salmonella typhimurium/efectos de la radiación , Rayos Ultravioleta , Recuento de Colonia Microbiana , Manipulación de Alimentos , Lactuca/efectos de la radiación , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...