Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745522

RESUMEN

Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders.

2.
Mol Genet Metab ; 137(3): 283-291, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36240582

RESUMEN

Studies aimed at supporting different treatment approaches for pantothenate kinase-associated neurodegeneration (PKAN) have revealed the complexity of coenzyme A (CoA) metabolism and the limits of our current knowledge about disease pathogenesis. Here we offer a foundation for critically evaluating the myriad approaches, argue for the importance of unbiased disease models, and highlight some of the outstanding questions that are central to our understanding and treating PKAN.


Asunto(s)
Neurodegeneración Asociada a Pantotenato Quinasa , Humanos , Coenzima A/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
3.
Antioxid Redox Signal ; 37(1-3): 150-170, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34569265

RESUMEN

Significance: Iron accumulation occurs in the central nervous system (CNS) in a variety of neurological conditions as diverse as spinal cord injury, stroke, multiple sclerosis, Parkinson's disease, and others. Iron is a redox-active metal that gives rise to damaging free radicals if its intracellular levels are not controlled or if it is not properly sequestered within cells. The accumulation of iron occurs due to dysregulation of mechanisms that control cellular iron homeostasis. Recent Advances: The molecular mechanisms that regulate cellular iron homeostasis have been revealed in much detail in the past three decades, and new advances continue to be made. Understanding which aspects of iron homeostasis are dysregulated in different conditions will provide insights into the causes of iron accumulation and iron-mediated tissue damage. Recent advances in iron-dependent lipid peroxidation leading to cell death, called ferroptosis, has provided useful insights that are highly relevant for the lipid-rich environment of the CNS. Critical Issues: This review examines the mechanisms that control normal cellular iron homeostasis, the dysregulation of these mechanisms in neurological disorders, and more recent work on how iron can induce tissue damage via ferroptosis. Future Directions: Quick and reliable tests are needed to determine if and when ferroptosis contributes to the pathogenesis of neurological disorders. In addition, there is need to develop better druggable agents to scavenge lipid radicals and reduce CNS damage for neurological conditions for which there are currently few effective treatments. Antioxid. Redox Signal. 37, 150-170.


Asunto(s)
Ferroptosis , Enfermedades Neurodegenerativas , Sistema Nervioso Central/metabolismo , Homeostasis , Humanos , Hierro/metabolismo , Peroxidación de Lípido , Lípidos
4.
EMBO Mol Med ; 11(12): e10489, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31660701

RESUMEN

Pantothenate kinase-associated neurodegeneration (PKAN) is an inborn error of CoA metabolism causing dystonia, parkinsonism, and brain iron accumulation. Lack of a good mammalian model has impeded studies of pathogenesis and development of rational therapeutics. We took a new approach to investigating an existing mouse mutant of Pank2 and found that isolating the disease-vulnerable brain revealed regional perturbations in CoA metabolism, iron homeostasis, and dopamine metabolism and functional defects in complex I and pyruvate dehydrogenase. Feeding mice a CoA pathway intermediate, 4'-phosphopantetheine, normalized levels of the CoA-, iron-, and dopamine-related biomarkers as well as activities of mitochondrial enzymes. Human cell changes also were recovered by 4'-phosphopantetheine. We can mechanistically link a defect in CoA metabolism to these secondary effects via the activation of mitochondrial acyl carrier protein, which is essential to oxidative phosphorylation, iron-sulfur cluster biogenesis, and mitochondrial fatty acid synthesis. We demonstrate the fidelity of our model in recapitulating features of the human disease. Moreover, we identify pharmacodynamic biomarkers, provide insights into disease pathogenesis, and offer evidence for 4'-phosphopantetheine as a candidate therapeutic for PKAN.


Asunto(s)
Coenzima A/metabolismo , Dopamina/metabolismo , Hierro/metabolismo , Panteteína/análogos & derivados , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Neurodegeneración Asociada a Pantotenato Quinasa/metabolismo , Animales , Biomarcadores/metabolismo , Genotipo , Ratones , Panteteína/farmacología , Panteteína/uso terapéutico , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
5.
Mol Genet Genomic Med ; 7(7): e00736, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31087512

RESUMEN

BACKGROUND: Mitochondrial membrane protein-associated neurodegeneration (MPAN) is caused by pathogenic sequence variants in C19orf12. Autosomal recessive inheritance has been demonstrated. We present evidence of autosomal dominant MPAN and propose a mechanism to explain these cases. METHODS: Two large families with apparently dominant MPAN were investigated; additional singleton cases of MPAN were identified. Gene sequencing and multiplex ligation-dependent probe amplification were used to characterize the causative sequence variants in C19orf12. Post-mortem brain from affected subjects was examined. RESULTS: In two multi-generation non-consanguineous families, we identified different nonsense sequence variations in C19orf12 that segregate with the MPAN phenotype. Brain pathology was similar to that of autosomal recessive MPAN. We additionally identified a preponderance of cases with single heterozygous pathogenic sequence variants, including two with de novo changes. CONCLUSIONS: We present three lines of clinical evidence to demonstrate that MPAN can manifest as a result of only one pathogenic C19orf12 sequence variant. We propose that truncated C19orf12 proteins, resulting from nonsense variants in the final exon in our autosomal dominant cohort, impair function of the normal protein produced from the non-mutated allele via a dominant negative mechanism and cause loss of function. These findings impact the clinical diagnostic evaluation and counseling.


Asunto(s)
Trastornos del Metabolismo del Hierro/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Distrofias Neuroaxonales/genética , Adulto , Encéfalo , Codón sin Sentido/genética , Estudios de Cohortes , Familia , Femenino , Genes Dominantes/genética , Heterocigoto , Humanos , Trastornos del Metabolismo del Hierro/metabolismo , Masculino , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Distrofias Neuroaxonales/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Linaje
6.
Mol Genet Metab ; 116(4): 289-97, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26547561

RESUMEN

Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive movement disorder that is due to mutations in PANK2. Pathologically, it is a member of a class of diseases known as neurodegeneration with brain iron accumulation (NBIA) and features increased tissue iron and ubiquitinated proteinaceous aggregates in the globus pallidus. We have previously determined that these aggregates represent condensed residue derived from degenerated pallidal neurons. However, the protein content, other than ubiquitin, of these aggregates remains unknown. In the present study, we performed biochemical and immunohistochemical studies to characterize these aggregates and found them to be enriched in apolipoprotein E that is poorly soluble in detergent solutions. However, we did not determine a significant association between APOE genotype and the clinical phenotype of disease in our database of 81 cases. Rather, we frequently identified similar ubiquitin- and apolipoprotein E-enriched lesions in these neurons in non-PKAN patients in the penumbrae of remote infarcts that involve the globus pallidus, and occasionally in other brain sites that contain large γ-aminobutyric acid (GABA)ergic neurons. Our findings, taken together, suggest that tissue or cellular hypoxic/ischemic injury within the globus pallidus may underlie the pathogenesis of PKAN.


Asunto(s)
Apolipoproteínas E/química , Isquemia Encefálica/genética , Neuronas GABAérgicas/química , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Agregación Patológica de Proteínas/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Isquemia Encefálica/complicaciones , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Estudios de Casos y Controles , Niño , Femenino , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Expresión Génica , Globo Pálido/metabolismo , Globo Pálido/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neurodegeneración Asociada a Pantotenato Quinasa/complicaciones , Neurodegeneración Asociada a Pantotenato Quinasa/metabolismo , Neurodegeneración Asociada a Pantotenato Quinasa/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Agregación Patológica de Proteínas/complicaciones , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
7.
Hum Mol Genet ; 23(1): 24-39, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23943793

RESUMEN

Iron-sulfur (Fe-S) clusters are ancient enzyme cofactors found in virtually all life forms. We evaluated the physiological effects of chronic Fe-S cluster deficiency in human skeletal muscle, a tissue that relies heavily on Fe-S cluster-mediated aerobic energy metabolism. Despite greatly decreased oxidative capacity, muscle tissue from patients deficient in the Fe-S cluster scaffold protein ISCU showed a predominance of type I oxidative muscle fibers and higher capillary density, enhanced expression of transcriptional co-activator PGC-1α and increased mitochondrial fatty acid oxidation genes. These Fe-S cluster-deficient muscles showed a dramatic up-regulation of the ketogenic enzyme HMGCS2 and the secreted protein FGF21 (fibroblast growth factor 21). Enhanced muscle FGF21 expression was reflected by elevated circulating FGF21 levels in the patients, and robust FGF21 secretion could be recapitulated by respiratory chain inhibition in cultured myotubes. Our findings reveal that mitochondrial energy starvation elicits a coordinated response in Fe-S-deficient skeletal muscle that is reflected systemically by increased plasma FGF21 levels.


Asunto(s)
Acidosis Láctica/congénito , Factores de Crecimiento de Fibroblastos/metabolismo , Hidroximetilglutaril-CoA Sintasa/metabolismo , Proteínas Hierro-Azufre/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/congénito , Factores de Transcripción/genética , Acidosis Láctica/genética , Acidosis Láctica/metabolismo , Acidosis Láctica/patología , Adulto , Anciano , Estudios de Casos y Controles , Células Cultivadas , Metabolismo Energético , Femenino , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Proteínas Hierro-Azufre/genética , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/metabolismo
8.
Cell Metab ; 17(2): 271-81, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23395173

RESUMEN

Iron regulatory proteins (Irps) 1 and 2 posttranscriptionally control the expression of transcripts that contain iron-responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor, and hypoxia-inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low-iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1(-/-) mice, which led to increased erythropoietin (EPO) expression, polycythemia, and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1(-/-) mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Eliminación de Gen , Hipertensión Pulmonar/complicaciones , Proteína 1 Reguladora de Hierro/metabolismo , Policitemia/complicaciones , Biosíntesis de Proteínas , Animales , Dieta , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelina-1/genética , Endotelina-1/metabolismo , Eritropoyetina/sangre , Hemorragia Gastrointestinal/sangre , Hemorragia Gastrointestinal/complicaciones , Hemorragia Gastrointestinal/patología , Hematopoyesis Extramedular/efectos de los fármacos , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/patología , Hierro/farmacología , Proteína 1 Reguladora de Hierro/deficiencia , Proteína 2 Reguladora de Hierro/metabolismo , Longevidad , Ratones , Modelos Biológicos , Degeneración Nerviosa/sangre , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Especificidad de Órganos/efectos de los fármacos , Policitemia/sangre , Policitemia/patología , Biosíntesis de Proteínas/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
9.
J Biol Chem ; 287(48): 40119-30, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23035118

RESUMEN

BACKGROUND: ISCU myopathy is a disease caused by muscle-specific deficiency of the Fe-S cluster scaffold protein ISCU. RESULTS: MyoD expression enhanced ISCU mRNA mis-splicing, and oxidative stress exacerbated ISCU depletion in patient cells. CONCLUSION: ISCU protein deficiency in patients results from muscle-specific mis-splicing as well as oxidative stress. SIGNIFICANCE: Oxidative stress negatively influences the mammalian Fe-S cluster assembly machinery by destabilization of ISCU. Iron-sulfur (Fe-S) cluster cofactors are formed on the scaffold protein ISCU. ISCU myopathy is a disease caused by an intronic mutation that leads to abnormally spliced ISCU mRNA. We found that two predominant mis-spliced ISCU mRNAs produce a truncated and short-lived ISCU protein product in multiple patient cell types. Expression of the muscle-specific transcription factor MyoD further diminished normal splicing of ISCU mRNA in patient myoblasts, demonstrating that the process of muscle differentiation enhances the loss of normal ISCU mRNA splicing. ISCU protein was nearly undetectable in patient skeletal muscle, but was higher in patient myoblasts, fibroblasts, and lymphoblasts. We next treated patient cells with pro-oxidants to mimic the oxidative stress associated with muscle activity. Brief hydrogen peroxide treatment or incubation in an enriched oxygen atmosphere led to a marked further reduction of ISCU protein levels, which could be prevented by pretreatment with the antioxidant ascorbate. Thus, we conclude that skeletal muscle differentiation of patient cells causes a higher degree of abnormal ISCU splicing and that oxidative stress resulting from skeletal muscle work destabilizes the small amounts of normal ISCU protein generated in patient skeletal muscles.


Asunto(s)
Diferenciación Celular , Proteínas Hierro-Azufre/genética , Enfermedades Mitocondriales/metabolismo , Músculo Esquelético/citología , Estrés Oxidativo , Empalme del ARN , Adulto , Anciano , Animales , Femenino , Humanos , Proteínas Hierro-Azufre/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Especificidad de Órganos , Adulto Joven
10.
PLoS One ; 7(4): e35241, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22529995

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI) studies have previously shown hypointense signal in the motor cortex on T(2)-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T(2)(*)-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Corteza Cerebral/patología , Hierro/metabolismo , Imagen por Resonancia Magnética , Adulto , Corteza Cerebral/metabolismo , Femenino , Humanos , Cuerpos de Inclusión/patología , Masculino , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Corteza Motora/metabolismo , Corteza Motora/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Neuroimagen , Médula Espinal/patología
11.
Cilia ; 1(1): 3, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23351752

RESUMEN

BACKGROUND: The central tenet of cilia function is sensing and transmitting information. The capacity to directly contact extracellular surfaces would empower primary cilia to probe the environment for information about the nature and location of nearby surfaces. It has been well established that flagella and other motile cilia perform diverse cellular functions through adhesion. We hypothesized that mammalian primary cilia also interact with the extracellular environment through direct physical contact. METHODS: We identified cilia in rod photoreceptors and cholangiocytes in fixed mouse tissues and examined the structures that these cilia contact in vivo. We then utilized an MDCK cell culture model to characterize the nature of the contacts we observed. RESULTS: In retina and liver tissue, we observed that cilia from nearby cells touch one another. Using MDCK cells, we found compelling evidence that these contacts are stable adhesions that form bridges between two cells, or networks between many cells. We examined the nature and duration of the cilia-cilia contacts and discovered primary cilia movements that facilitate cilia-cilia encounters. Stable adhesions form as the area of contact expands from a single point to a stretch of tightly bound, adjacent cilia membranes. The cilia-cilia contacts persisted for hours and were resistant to several harsh treatments such as proteases and DTT. Unlike many other cell adhesion mechanisms, calcium was not required for the formation or maintenance of cilia adhesion. However, swainsonine, which blocks maturation of N-linked glycoproteins, reduced contact formation. We propose that cellular control of adhesion maintenance is active because cilia adhesion did not prevent cell division; rather, contacts dissolved during mitosis as cilia were resorbed. CONCLUSIONS: The demonstration that mammalian primary cilia formed prolonged, direct, physical contacts supports a novel paradigm: that mammalian primary cilia detect features of the extracellular space, not just as passive antennae, but also through direct physical contact. We present a model for the cycle of glycoprotein-dependent contact formation, maintenance, and termination, and discuss the implications for potential physiological functions of cilia-cilia contacts.

12.
PLoS One ; 6(10): e25404, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22003390

RESUMEN

Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.


Asunto(s)
Eliminación de Gen , Deficiencias de Hierro , Proteína 2 Reguladora de Hierro/deficiencia , Proteína 2 Reguladora de Hierro/genética , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Animales , Apoferritinas/biosíntesis , Atrofia/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Óxidos N-Cíclicos/farmacología , Homeostasis/efectos de los fármacos , Homeostasis/genética , Hierro/metabolismo , Proteína 1 Reguladora de Hierro/deficiencia , Proteína 1 Reguladora de Hierro/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Neuronas Motoras/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Marcadores de Spin , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología
13.
Cancer Cell ; 20(3): 315-27, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21907923

RESUMEN

Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fumarato Hidratasa/deficiencia , Deficiencias de Hierro , Neoplasias Renales/metabolismo , Leiomiomatosis/congénito , Acetilcoenzima A/biosíntesis , Acetil-CoA Carboxilasa/biosíntesis , Acetil-CoA Carboxilasa/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Proteínas de Transporte de Catión/biosíntesis , Línea Celular Tumoral , Fumarato Hidratasa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína 1 Reguladora de Hierro/biosíntesis , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/biosíntesis , Proteína 2 Reguladora de Hierro/metabolismo , Neoplasias Renales/enzimología , Neoplasias Renales/patología , Leiomiomatosis/metabolismo , Leiomiomatosis/patología , Ratones , NADP/biosíntesis , Síndromes Neoplásicos Hereditarios , Ribosa/biosíntesis , Proteína S6 Ribosómica/biosíntesis , Proteína S6 Ribosómica/metabolismo , Neoplasias Cutáneas , Tenoiltrifluoroacetona/farmacología , Proteína p53 Supresora de Tumor/biosíntesis , Neoplasias Uterinas
14.
J Clin Invest ; 120(5): 1749-61, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20364084

RESUMEN

Glutaredoxin 5 (GLRX5) deficiency has previously been identified as a cause of anemia in a zebrafish model and of sideroblastic anemia in a human patient. Here we report that GLRX5 is essential for iron-sulfur cluster biosynthesis and the maintenance of normal mitochondrial and cytosolic iron homeostasis in human cells. GLRX5, a mitochondrial protein that is highly expressed in erythroid cells, can homodimerize and assemble [2Fe-2S] in vitro. In GLRX5-deficient cells, [Fe-S] cluster biosynthesis was impaired, the iron-responsive element-binding (IRE-binding) activity of iron regulatory protein 1 (IRP1) was activated, and increased IRP2 levels, indicative of relative cytosolic iron depletion, were observed together with mitochondrial iron overload. Rescue of patient fibroblasts with the WT GLRX5 gene by transfection or viral transduction reversed a slow growth phenotype, reversed the mitochondrial iron overload, and increased aconitase activity. Decreased aminolevulinate delta, synthase 2 (ALAS2) levels attributable to IRP-mediated translational repression were observed in erythroid cells in which GLRX5 expression had been downregulated using siRNA along with marked reduction in ferrochelatase levels and increased ferroportin expression. Erythroblasts express both IRP-repressible ALAS2 and non-IRP-repressible ferroportin 1b. The unique combination of IRP targets likely accounts for the tissue-specific phenotype of human GLRX5 deficiency.


Asunto(s)
Anemia Sideroblástica/metabolismo , Citosol/metabolismo , Eritroblastos/metabolismo , Glutarredoxinas/deficiencia , Glutarredoxinas/fisiología , Hemo/metabolismo , Hierro/metabolismo , 5-Aminolevulinato Sintetasa/metabolismo , Secuencia de Aminoácidos , Células HeLa , Humanos , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Fenotipo , ARN Interferente Pequeño/metabolismo , Homología de Secuencia de Aminoácido
15.
Metab Brain Dis ; 24(4): 673-84, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19851851

RESUMEN

Maintenance of appropriate iron homeostasis in the brain is important, but the mechanisms involved in brain iron uptake are incompletely understood. Here, we have analyzed where messenger RNAs that encode iron transport proteins are expressed in the brain, using the Allen Brain atlas, and we conclude that several important iron transporters are highly expressed in the choroid plexus. Based on recent estimates of the surface area of the choroid plexus and on MRI imaging studies of manganese uptake in the brain, we propose that the choroid plexus may have a much greater role than has been previously appreciated in brain iron transport.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Plexo Coroideo/metabolismo , Homeostasis/fisiología , Hierro/metabolismo , Animales , Atlas como Asunto , Encéfalo/anatomía & histología , Química Encefálica/fisiología , Mapeo Encefálico , Capilares/citología , Capilares/metabolismo , Proteínas de Transporte de Catión/metabolismo , Ceruloplasmina/metabolismo , Plexo Coroideo/citología , Células Epiteliales/metabolismo , Ferritinas/metabolismo , Expresión Génica/fisiología , Imagen por Resonancia Magnética , Ratones , ARN Mensajero/metabolismo
16.
J Neurosci ; 29(3): 610-9, 2009 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19158288

RESUMEN

Amyotrophic lateral sclerosis (ALS), characterized by degeneration of spinal motor neurons, consists of sporadic and familial forms. One cause of familial ALS is missense mutations in the superoxide dismutase 1 (SOD1) gene. Iron accumulation occurs in the CNS of both forms of ALS; however, its contribution to the pathogenesis of ALS is not known. We examined the role of iron in a transgenic mouse line overexpressing the human SOD1(G37R) mutant. We show that multiple mechanisms may underlie the iron accumulation in neurons and glia in SOD1(G37R) transgenic mice. These include dysregulation of proteins involved in iron influx and sensing of intracellular iron; iron accumulation in ventral motor neurons secondary to blockage of anterograde axonal transport; and increased mitochondrial iron load in neurons and glia. We also show that treatment of SOD1(G37R) mice with an iron chelator extends life span by 5 weeks, accompanied by increased survival of spinal motor neurons and improved locomotor function. These data suggest that iron chelator therapy might be useful for the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/patología , Sistema Nervioso Central/metabolismo , Hierro/metabolismo , Factores de Edad , Aldehídos/uso terapéutico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ferrozina , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Homeostasis , Hidrazonas/uso terapéutico , Indoles , Quelantes del Hierro/uso terapéutico , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Mutación , Fosfopiruvato Hidratasa/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Neuropatía Ciática/metabolismo , Superóxido Dismutasa/genética
17.
J Neurosci ; 28(48): 12736-47, 2008 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19036966

RESUMEN

CNS injury-induced hemorrhage and tissue damage leads to excess iron, which can cause secondary degeneration. The mechanisms that handle this excess iron are not fully understood. We report that spinal cord contusion injury (SCI) in mice induces an "iron homeostatic response" that partially limits iron-catalyzed oxidative damage. We show that ceruloplasmin (Cp), a ferroxidase that oxidizes toxic ferrous iron, is important for this process. SCI in Cp-deficient mice demonstrates that Cp detoxifies and mobilizes iron and reduces secondary tissue degeneration and functional loss. Our results provide new insights into how astrocytes and macrophages handle iron after SCI. Importantly, we show that iron chelator treatment has a delayed effect in improving locomotor recovery between 3 and 6 weeks after SCI. These data reveal important aspects of the molecular control of CNS iron homeostasis after SCI and suggest that iron chelator therapy may improve functional recovery after CNS trauma and hemorrhagic stroke.


Asunto(s)
Ceruloplasmina/farmacología , Hemorragia/tratamiento farmacológico , Trastornos del Metabolismo del Hierro/tratamiento farmacológico , Hierro/toxicidad , Estrés Oxidativo/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ceruloplasmina/uso terapéutico , Modelos Animales de Enfermedad , Hemorragia/complicaciones , Hemorragia/fisiopatología , Hierro/metabolismo , Trastornos del Metabolismo del Hierro/etiología , Trastornos del Metabolismo del Hierro/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/fisiología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/fisiopatología , Resultado del Tratamiento
18.
Glia ; 56(4): 436-48, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18205174

RESUMEN

Secondary tissue damage that occurs within days after spinal cord injury contributes significantly to permanent paralysis, sensory loss, and other functional disabilities. The acute inflammatory response is thought to contribute largely to this secondary damage. We show here that 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2), a metabolite of prostaglandin D2 (PGD2) that has anti-inflammatory actions, given daily for the first 2 weeks after spinal cord contusion injury in mice, results in significant improvement of sensory and locomotor function. 15d-PGJ2-treated mice also show diminished signs of microglia/macrophage activation, increased neuronal survival, greater serotonergic innervation, and reduced demyelination in the injured spinal cord. These changes are accompanied by a reduction in chemokine and pro-inflammatory cytokine expression. Our results also indicate that 15d-PGJ2 is likely to reduce inflammation in the injured spinal cord by attenuating multiple signaling pathways: reducing activation of NF-kappa B; enhancing expression of suppressor of cytokine signaling1 and reducing the activation of Janus activated Kinase 2.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Prostaglandina D2/análogos & derivados , Traumatismos de la Médula Espinal/tratamiento farmacológico , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Enfermedades Desmielinizantes/tratamiento farmacológico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Microglía/efectos de los fármacos , Actividad Motora/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Prostaglandina D2/uso terapéutico , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factores de Tiempo
19.
EMBO J ; 26(12): 2823-31, 2007 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-17541408

RESUMEN

Ferroportin (Fpn), a ferrous iron Fe(II) transporter responsible for the entry of iron into plasma, is regulated post-translationally through internalization and degradation following binding of the hormone hepcidin. Cellular iron export is impaired in mice and humans with aceruloplasminemia, an iron overload disease due to mutations in the ferroxidase ceruloplasmin (Cp). In the absence of Cp Fpn is rapidly internalized and degraded. Depletion of extracellular Fe(II) by the yeast ferroxidase Fet3p or iron chelators can maintain cell surface Fpn in the absence of Cp. Iron remains bound to Fpn in the absence of multicopper oxidases. Fpn with bound iron is recognized by a ubiquitin ligase, which ubiquitinates Fpn on lysine 253. Mutation of lysine 253 to alanine prevents ubiquitination and maintains Fpn-iron on cell surface in the absence of ferroxidase activity. The requirement for a ferroxidase to maintain iron transport activity represents a new mechanism of regulating cellular iron export, a new function for Cp and an explanation for brain iron overload in patients with aceruloplasminemia.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Ceruloplasmina/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Animales , Endocitosis , Humanos , Ratones , ARN Interferente Pequeño , Ratas , Células Tumorales Cultivadas
20.
Glia ; 55(3): 294-302, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17096403

RESUMEN

We have previously shown that intraspinal microinjection of lysophosphatidylcholine (LPC), a potent demyelinating agent, results in a rapid but brief influx of T cells (between 6 and 12 h). This is accompanied by a robust activation of macrophages/microglia that leads to demyelination by 48 h. In the present study, we examined whether this brief influx of T cells contributes to the activation of macrophages/microglia and demyelination by injecting LPC into the dorsal column white matter of athymic Nude mice that lack T cells. We show that there is a significant reduction in macrophage/microglial activation and myelin clearance after LPC injection in Nude mice as compared with wildtype controls. We also show that there is no difference in the recruitment of hematogenous macrophages into the spinal cord after LPC injection in the two mouse strains. Of the T cell cytokines assessed, there was a marked reduction in the mRNA expression of interleukin-2 (IL-2) in Nude mice compared with wildtype animals. Neutralizing IL-2 with function-blocking antibodies in wildtype animals resulted in a significant decrease in the number of phagocytic macrophages/microglia and a reduction in demyelination induced by LPC. While there may be other defects in Nude mice that might contribute to the effects shown here, these data suggest that the brief influx of T cells in this model of chemically-induced demyelination could play a role in macrophage/microglial activation and demyelination. These results may also have implications for remyelination in this and other types of CNS damage.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Enfermedades Autoinmunes Desmielinizantes SNC/inmunología , Activación de Linfocitos/inmunología , Lisofosfatidilcolinas/farmacología , Macrófagos/inmunología , Linfocitos T/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Enfermedades Autoinmunes Desmielinizantes SNC/inducido químicamente , Enfermedades Autoinmunes Desmielinizantes SNC/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/inmunología , Femenino , Interleucina-2/antagonistas & inhibidores , Interleucina-2/genética , Interleucina-2/inmunología , Activación de Linfocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/inmunología , Vaina de Mielina/patología , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/inmunología , Fibras Nerviosas Mielínicas/patología , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/patología , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...