Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(17): e2307089, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185784

RESUMEN

Composites comprising copper-doped zinc sulfide phosphor microparticles embedded in polydimethylsiloxane (ZnS:Cu-PDMS) have received significant attention over the past decade because of their bright and durable mechanoluminescence (ML); however, the underlying mechanism of this unique ML remains unclear. This study reports empirical and theoretical findings that confirm this ML is an electroluminescence (EL) of the ZnS:Cu phosphor induced by the triboelectricity generated at the ZnS:Cu microparticle-PDMS matrix interface. ZnS:Cu microparticles that exhibit bright ML are coated with alumina, an oxide with strong positive triboelectric properties; the contact separation between this oxide coating and PDMS, a polymer with strong negative triboelectric properties, produces sufficient interfacial triboelectricity to induce EL in ZnS:Cu microparticles. The ML of ZnS:Cu-PDMS composites varies on changing the coating material, exhibiting an intensity that is proportional to the amount of interfacial triboelectricity generated in the system. Finally, based on these findings, a mechanism that explains the ML of phosphor-polymer elastic composites (interfacial triboelectric field-driven alternating-current EL model) is proposed in this study. It is believed that understanding this mechanism will enable the development of new materials (beyond ZnS:Cu-PDMS systems) with bright and durable ML.

2.
Small ; : e2308847, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38174599

RESUMEN

The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+ , so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1 .

3.
Adv Sci (Weinh) ; 11(4): e2305383, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38037253

RESUMEN

Surface defects of metal halide perovskite nanocrystals (PNCs) substantially compromise the optoelectronic performances of the materials and devices via undesired charge recombination. However, those defects, mainly the vacancies, are structurally entangled with each other in the PNC lattice, necessitating a delicately designed strategy for effective passivation. Here, a synergistic metal ion doping and surface ligand exchange strategy is proposed to passivate the surface defects of CsPbBr3 PNCs with various divalent metal (e.g., Cd2+ , Zn2+, and Hg2+ ) acetate salts and didodecyldimethylammonium (DDA+ ) via one-step post-treatment. The addition of metal acetate salts to PNCs is demonstrated to suppress the defect formation energy effectively via the ab initio calculations. The developed PNCs not only have near-unity photoluminescence quantum yield and excellent stability but also show luminance of 1175 cd m-2 , current efficiency of 65.48 cd A-1 , external quantum efficiency of 20.79%, wavelength of 514 nm in optimized PNC light-emitting diodes with Cd2+ passivator and DDA ligand. The "organic-inorganic" hybrid engineering approach is completely general and can be straightforwardly applied to any combination of quaternary ammonium ligands and source of metal, which will be useful in PNC-based optoelectronic devices such as solar cells, photodetectors, and transistors.

4.
Small ; 19(45): e2303472, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37420329

RESUMEN

The severely insufficient operational lifetime of perovskite light-emitting diodes (LEDs) is incompatible with the rapidly increasing external quantum efficiency, even as it approaches the theoretical limit, thereby significantly impeding the commercialization of perovskite LEDs. In addition, Joule heating induces ion migration and surface defects, degrades the photoluminescence quantum yield and other optoelectronic properties of perovskite films, and induces the crystallization of charge transport layers with low glass transition temperatures, resulting in LED degradation under continuous operation. Here, a novel thermally crosslinked hole transport material, poly(FCA60 -co-BFCA20 -co-VFCA20 ) (poly-FBV), with temperature-dependent hole mobility is designed, which is advantageous for balancing the charge injection of the LEDs and limiting the generation of Joule heating. The optimised CsPbI3 perovskite nanocrystal LEDs with poly-FBV realise approximately a 2-fold external quantum efficiency increase over the LED with commercial hole transport layer poly(4-butyl-phenyl-diphenyl-amine) (poly-TPD), owing to the balanced carrier injection and suppressed exciton quenching. Moreover, because of the Joule heating control provided by the novel crosslinked hole transport material, the LED utilising crosslinked poly-FBV has a 150-fold longer operating lifetime (490 min) than that utilizing poly-TPD (3.3 min). The study opens a new avenue for the use of PNC LEDs in commercial semiconductor optoelectronic devices.

5.
Small ; 19(36): e2301161, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127870

RESUMEN

Cdx Hg1- x Se/HgS/Cdy Zn1- y S core/multi-shell quantum dots (QDs) exhibiting bright tissue-penetrating shortwave infrared (SWIR; 1000-1700 nm) photoluminescence (PL) are engineered. The new structure consists of a quasi-type-II Cdx Hg1- x Se/HgS core/inner shell domain creating luminescent bandgap tunable across SWIR window and a wide-bandgap Cdy Zn1- y S outer shell boosting the PL quantum yield (QY). This compositional sequence also facilitates uniform and coherent shell growth by minimizing interfacial lattice mismatches, resulting in high QYs in both organic (40-80%) and aqueous (20-70%) solvents with maximum QYs of 87 and 73%, respectively, which are comparable to those of brightest visible-to-near infrared QDs. Moreover, they maintain bright PL in a photocurable resin (QY 40%, peak wavelength ≈ 1300 nm), enabling the fabrication of SWIR-luminescent composites of diverse morphology and concentration. These composites are used to localize controlled amounts of SWIR QDs inside artificial (Intralipid) and porcine tissues and quantitatively evaluate the applicability as luminescent probes for deep-tissue imaging.

6.
ACS Appl Mater Interfaces ; 15(4): 5547-5555, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688562

RESUMEN

A string of monocyanated quinoxaline (Qx)-based D-A-type polymers systematically decorated with electron-attracting chlorine (Cl) atoms was created for use in non-fullerene polymer solar cells (PSCs). First, coupling of the benzodithiophene (BDT) donor and Qx acceptor with the strong electron-attracting cyano (CN) unit at its 5-position yielded the monocyanated reference polymer PB-CNQ. Subsequently, the additional Cl atoms were separately or simultaneously incorporated into the thiophene side groups of the BDT donor and Qx acceptor to create other objective polymers, PBCl-CNQ, PB-CNQCl, and PBCl-CNQCl. The Cl substituents on the BDT donor and Qx acceptor are represented by the names of the polymers. Owing to the favorable contributions of Cl substituents, the inverted-type non-fullerene PSCs based on partially chlorinated PBCl-CNQ (12.80%) and PB-CNQCl (13.93%) exhibited better power conversion efficiencies (PCEs) than the device based on unchlorinated reference PB-CNQ (11.19%). However, a significantly reduced PCE of 9.84% was observed for the device based on PBCl-CNQCl, in which Cl atoms were loaded on both the BDT donor and Qx acceptor at the same time. Hence, these results reveal that optimization of the number and position of Cl substituents in monocyanated Qx-based polymers is essential for enhancing their photovoltaic nature through the synergistic effects between two strong electron-attracting CN and Cl substituents.

7.
Adv Mater ; 35(8): e2209486, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36496257

RESUMEN

Semiconducting lead halide perovskite nanocrystals (PNCs) are regarded as promising candidates for next-generation optoelectronic devices due to their solution processability and outstanding optoelectronic properties. While the field of light-emitting diodes (LEDs) and photovoltaics (PVs), two prime examples of optoelectronic devices, has recently seen a multitude of efforts toward high-performance PNC-based devices, realizing both devices with high efficiencies and stabilities through a single PNC processing strategy has remained a challenge.  In this work, diphenylpropylammonium (DPAI) surface ligands, found through a judicious ab-initio-based ligand search, are shown to provide a solution to this problem. The universal PNC ink with DPAI ligands presented here, prepared through a solution-phase ligand-exchange process, simultaneously allows single-step processed LED and PV devices with peak electroluminescence external quantum efficiency of 17.00% and power conversion efficiency of 14.92% (stabilized output 14.00%), respectively. It is revealed that a careful design of the aromatic rings such as in DPAI is the decisive factor in bestowing such high performances, ease of solution processing, and improved phase stability up to 120 days. This work illustrates the power of ligand design in producing PNC ink formulations for high-throughput production of optoelectronic devices; it also paves a path for "dual-mode" devices with both PV and LED functionalities.

8.
Chem Res Toxicol ; 35(5): 774-781, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35317551

RESUMEN

The recent terrorist attacks using Novichok agents and subsequent operations have necessitated an understanding of its physicochemical properties, such as vapor pressure and toxicity, as well as unascertained nerve agent structures. To prevent continued threats from new types of nerve agents, the organization for the prohibition of chemical weapons (OPCW) updated the chemical weapons convention (CWC) schedule 1 list. However, this information is vague and may encompass more than 10 000 possible chemical structures, which makes it almost impossible to synthesize and measure their properties and toxicity. To assist this effort, we successfully developed machine learning (ML) models to predict the vapor pressure to help with escape and removal operations. The model shows robust and high-accuracy performance with promising features for predicting vapor pressure when applied to Novichok materials and accurate predictions with reasonable errors. The ML classification model was successfully built for the swallow globally harmonized system class of organophosphorus compounds (OP) for toxicity predictions. The tuned ML model was used to predict the toxicity of Novichok agents, as described in the CWC list. Although its accuracy and linearity can be improved, this ML model is expected to be a firm basis for developing more accurate models for predicting the vapor pressure and toxicity of nerve agents in the future to help handle future terror attacks with unknown nerve agents.


Asunto(s)
Sustancias para la Guerra Química , Agentes Nerviosos , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/toxicidad , Aprendizaje Automático , Agentes Nerviosos/química , Agentes Nerviosos/toxicidad , Organofosfatos/química , Presión de Vapor
9.
ACS Nano ; 16(1): 1649-1660, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35025199

RESUMEN

Complete surface passivation of colloidal quantum dots (CQDs) and their strong electronic coupling are key factors toward high-performance CQD-based photovoltaics (CQDPVs). Also, the CQD matrices must be protected from oxidative environments, such as ambient air and moisture, to guarantee air-stable operation of the CQDPVs. Herein, we devise a complementary and effective approach to reconstruct the oxidized CQD surface using guanidinium and pseudohalide. Unlike conventional halides, thiocyanate anions provide better surface passivation with effective replacement of surface oxygen species and additional filling of defective sites, whereas guanidinium cations promote the construction of epitaxial perovskite bridges within the CQD matrix and augment electronic coupling. Additionally, we replace a defective 1,2-ethanedithiol-treated CQD hole transport layer (HTL) with robust polymeric HTLs, based on a judicious consideration of the energy level alignment established at the CQD/HTL interface. These efforts collectively result in high-performance and stable CQDPVs with photocurrents over 30 mA cm-2, ∼80% quantum efficiency at excitonic peaks and stable operation under humid and ambient conditions. Elucidation of carrier dynamics further reveals that interfacial recombination associated with band alignment governs both the CQDPV performance and stability.

10.
Molecules ; 26(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206601

RESUMEN

To identify biomarkers of ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234)- or methyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A232)-inhibited butyrylcholinesterase (BChE), we investigated nonapeptide adducts containing the active site serine, which plays a key role in enzyme activity, using LC-MS/HRMS. Biomarkers were acquired as expected, and they exhibited a significant amount of fragment ions from the inhibiting agent itself, in contrast to the MS2 spectra of conventional nerve agents. These biomarkers had a higher abundance of [M+2H]2+ ions than [M+H]+ ions, making doubly charged ions more suitable for trace analysis.


Asunto(s)
Butirilcolinesterasa/sangre , Agentes Nerviosos , Organofosfatos , Plasma , Biomarcadores/sangre , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/toxicidad , Humanos , Agentes Nerviosos/farmacocinética , Agentes Nerviosos/toxicidad , Organofosfatos/farmacocinética , Organofosfatos/toxicidad
11.
Hum Vaccin Immunother ; 14(2): 329-336, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29140753

RESUMEN

Botulinum neurotoxins (BoNTs) are the most potent toxins to mammals. A toxoid vaccine was previously used for prevention of botulinum intoxication; however, this vaccine is no longer available. Currently, no approved botulinum vaccines are available from the Food and Drug Administration (FDA). Recently, a recombinant host cell receptor-binding subunit created for use as a potential vaccine completed phase 2 clinical trials. The current study designed a vaccine candidate against BoNT type A (BoNT/A) using a structural design. Our vaccine candidate was the BoNT/A heavy chain C-terminal region (HCR) that contained the point mutation BA15 (R1269A) within the ganglioside-binding site. A Biacore affinity test showed that the affinity of BA15 for ganglioside GT1b was 100 times lower than that of the HCR. A SNAP25 cleavage assay revealed that immunized sera blocked SNAP25 cleavage of the BoNT/A toxin via BA15. In an in vivo experiment, mice and guinea pigs immunized with BA15 produced neutralizing antibodies that protected against 3,000 LD50 of BoNT/A. In conclusion, the results of both in vitro and in vivo assays showed that our BA15 vaccine candidate was similar to the recombinant host cell receptor-binding subunit vaccine. The inability of BA15to bind ganglioside shows that BA15 is a potential safe vaccine candidate.


Asunto(s)
Vacunas Bacterianas/inmunología , Toxinas Botulínicas Tipo A/inmunología , Proteínas Recombinantes/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Toxinas Botulínicas Tipo A/genética , Botulismo/prevención & control , Línea Celular , Gangliósidos/química , Gangliósidos/metabolismo , Cobayas , Inmunoglobulina G/sangre , Ratones , Modelos Moleculares , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Mutación Puntual , Conformación Proteica , Subunidades de Proteína
12.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 11): 595-600, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29095152

RESUMEN

Four mutations (N23A, Y90A, R110A and F177A) were introduced into S19, a vaccine candidate for staphylococcal enterotoxin B (SEB), resulting in a lower binding affinity towards the T-cell receptor beta chain (TCB) and reducing its superantigen activity. The structure of S19 was solved and was superposed on the native or complex structure of SEB. In the superposition model, mutations that were introduced seemed to reduce the number of hydrogen bonds at the SEB-TCB interface. S19 also displayed an unexpected structural change around the flexible-loop region owing to the Y90A mutation. This local structural change provided evidence that the mutated form of S19 could have a lower affinity for major histocompatibility complex (MHC) class II than wild-type SEB.


Asunto(s)
Enterotoxinas/química , Enterotoxinas/inmunología , Mutación , Vacunas Estafilocócicas/química , Vacunas Estafilocócicas/inmunología , Cristalografía por Rayos X , Enterotoxinas/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Enlace de Hidrógeno , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Vacunas Estafilocócicas/genética
13.
Nat Commun ; 7: 11031, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26980593

RESUMEN

Building a sophisticated protein nano-assembly requires a method for linking protein components in a predictable and stable structure. Most of the cross linkers available have flexible spacers. Because of this, the linked hybrids have significant structural flexibility and the relative structure between their two components is largely unpredictable. Here we describe a method of connecting two proteins via a 'fusion α helix' formed by joining two pre-existing helices into a single extended helix. Because simple ligation of two helices does not guarantee the formation of a continuous helix, we used EY-CBS, a synthetic cross linker that has been shown to react selectively with cysteines in α-helices, to stabilize the connecting helix. Formation and stabilization of the fusion helix was confirmed by determining the crystal structures of the fusion proteins with and without bound EY-CBS. Our method should be widely applicable for linking protein building blocks to generate predictable structures.


Asunto(s)
Ancirinas/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Proteína Estafilocócica A/efectos de los fármacos , Ancirinas/química , Cristalización , Cristalografía por Rayos X , Cisteína/química , Cisteína/efectos de los fármacos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Proteína Estafilocócica A/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...