Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Methods Protoc ; 9(1): bpae008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414647

RESUMEN

Protoplast regeneration has become a key platform for genetic and genome engineering. However, we lack reliable and reproducible methods for efficient protoplast regeneration for tomato (Solanum lycopersicum) cultivars. Here, we optimized cell and tissue culture methods for protoplast isolation, microcallus proliferation, shoot regeneration, and plantlet establishment of the tomato cultivar Micro-Tom. A thin layer of alginate was applied to protoplasts isolated from third to fourth true leaves and cultured at an optimal density of 1 × 105 protoplasts/ml. We determined the optimal culture media for protoplast proliferation, callus formation, de novo shoot regeneration, and root regeneration. Regenerated plantlets exhibited morphologically normal growth and sexual reproduction. The entire regeneration process, from protoplasts to flowering plants, was accomplished within 5 months. The optimized protoplast regeneration platform enables biotechnological applications, such as genome engineering, as well as basic research on plant regeneration in Solanaceae species.

2.
Front Plant Sci ; 13: 950378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923878

RESUMEN

Developmental plasticity contributes to plant adaptation and fitness in a given condition. Hypocotyl elongation is under the tight control of complex genetic networks encompassing light, circadian, and photoperiod signaling. In this study, we demonstrate that HISTONE DEACETYLASE 9 (HDA9) mediates day length-dependent hypocotyl cell elongation. HDA9 binds to the GIGANTEA (GI) locus involved in photoperiodic hypocotyl elongation. The short day (SD)-accumulated HDA9 protein promotes histone H3 deacetylation at the GI locus during the dark period, promoting hypocotyl elongation. Consistently, HDA9-deficient mutants display reduced hypocotyl length, along with an increase in GI gene expression, only under SD conditions. Taken together, our study reveals the genetic basis of day length-dependent cell elongation in plants.

3.
Plant Methods ; 17(1): 21, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622383

RESUMEN

BACKGROUND: Plants have a remarkable reprogramming potential, which facilitates plant regeneration, especially from a single cell. Protoplasts have the ability to form a cell wall and undergo cell division, allowing whole plant regeneration. With the growing need for protoplast regeneration in genetic engineering and genome editing, fundamental studies that enhance our understanding of cell cycle re-entry, pluripotency acquisition, and de novo tissue regeneration are essential. To conduct these studies, a reproducible and efficient protoplast regeneration method using model plants is necessary. RESULTS: Here, we optimized cell and tissue culture methods for improving protoplast regeneration efficiency in Arabidopsis thaliana. Protoplasts were isolated from whole seedlings of four different Arabidopsis ecotypes including Columbia (Col-0), Wassilewskija (Ws-2), Nossen (No-0), and HR (HR-10). Among these ecotypes, Ws-2 showed the highest potential for protoplast regeneration. A modified thin alginate layer was applied to the protoplast culture at an optimal density of 1 × 106 protoplasts/mL. Following callus formation and de novo shoot regeneration, the regenerated inflorescence stems were used for de novo root organogenesis. The entire protoplast regeneration process was completed within 15 weeks. The in vitro regenerated plants were fertile and produced morphologically normal progenies. CONCLUSION: The cell and tissue culture system optimized in this study for protoplast regeneration is efficient and reproducible. This method of Arabidopsis protoplast regeneration can be used for fundamental studies on pluripotency establishment and de novo tissue regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...