Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Genes Evol ; 232(2-4): 67-79, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798873

RESUMEN

Mechanical influencers have long been shown to affect mature bone. Bone mechanosensation is a key feature that allows the skeleton to adapt to environmental constraints. In this study, we describe the response of immature, developing bones to a mechanical stimulus. To do so, zebrafish larvae at different stages of development were exposed to whole-body vibration (WBV) at a low frequency of 20 Hz, for up to 4 days. Whole mount Alizarin red and Alcian blue staining revealed age-related and bone type-specific defects. Specifically, the parhypural and hypural 1 caudal fin endoskeletal elements were affected when the exposure to WBV started early during their development. We show that these WBV-induced parhypural and hypural 1 patterning defects are triggered by a Sox9-independent pathway, potentially by reducing the distance separating adjacent chondrogenic condensations in the developing tail skeleton. The remaining hypurals were unaffected by the WBV treatment. Altogether, our results indicate that, upon exposure to vibration, chondrogenic cell progenitors can react to mechanical stimuli early during their development, which ultimately affects the skeletal patterning of the growing zebrafish larvae. These findings open a new research avenue to better understand the cellular processes involved in developing, patterning, and maintaining skeletal tissue.


Asunto(s)
Vibración , Pez Cebra , Animales , Huesos , Larva
2.
J Exp Zool B Mol Dev Evol ; 336(1): 18-31, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184938

RESUMEN

Across the teleost skeleton, cartilages are diverse in their composition suggesting subtle differences in their developmental mechanisms. This study aims to elucidate the regulatory role of bone morphogenetic protein (BMPs) during the morphogenesis of two cartilage elements in zebrafish: the scleral cartilage in the eye and the caudal fin endoskeleton. Zebrafish larvae were exposed to a BMP inhibitor (LDN193189) at a series of timepoints preceding the initial appearance of the scleral cartilage and caudal fin endoskeleton. Morphological assessments of the cartilages in later stages, revealed that BMP-inhibited fish harbored striking disruptions in caudal fin endoskeletal morphology, regardless of the age at which the inhibitor treatment was performed. In contrast, scleral cartilage morphology was unaffected in all age groups. Morphometric and principal component analysis, performed on the caudal fin endoskeleton, revealed differential clustering of principal components one and two in BMP-inhibited and control fish. Additionally, the expression of sox9a and sox9b were reduced in BMP-inhibited fish when compared to controls, indicating that LDN193189 acts via a Sox9-dependent pathway. Further examination of notochord flexion also revealed a disruptive effect of BMP inhibition on this process. This study provides a detailed characterization of the effects of BMP inhibition via LDN193189 on zebrafish cartilage morphogenesis and development. It highlights the specific, localized role of the BMP-signaling pathways during the development of different cartilage elements and sheds some light on the morphological characteristics of fossil teleosts that together suggest an uncoupling of the developmental processes between the upper and lower lobes of the caudal fin.


Asunto(s)
Cartílago/anatomía & histología , Condrogénesis/fisiología , Envejecimiento , Aletas de Animales/anatomía & histología , Aletas de Animales/fisiología , Animales , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Larva , Pirazoles/farmacología , Pirimidinas/farmacología , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
3.
Development ; 145(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29752384

RESUMEN

During zebrafish fin regeneration, blastema cells lining the epidermis differentiate into osteoblasts and joint cells to reconstruct the segmented bony rays. We show that osteoblasts and joint cells originate from a common cell lineage, but are committed to different cell fates. Pre-osteoblasts expressing runx2a/b commit to the osteoblast lineage upon expressing sp7, whereas the strong upregulation of hoxa13a correlates with a commitment to a joint cell type. In the distal regenerate, hoxa13a, evx1 and pthlha are sequentially upregulated at regular intervals to define the newly identified presumptive joint cells. Presumptive joint cells mature into joint-forming cells, a distinct cell cluster that maintains the expression of these factors. Analysis of evx1 null mutants reveals that evx1 is acting upstream of pthlha and downstream of or in parallel with hoxa13a Calcineurin activity, potentially through the inhibition of retinoic acid signaling, regulates evx1, pthlha and hoxa13a expression during joint formation. Furthermore, retinoic acid treatment induces osteoblast differentiation in mature joint cells, leading to ectopic bone deposition in joint regions. Overall, our data reveal a novel regulatory pathway essential for joint formation in the regenerating fin.


Asunto(s)
Aletas de Animales/crecimiento & desarrollo , Calcineurina/metabolismo , Articulaciones/crecimiento & desarrollo , Regeneración/fisiología , Tretinoina/farmacología , Pez Cebra/fisiología , Animales , Diferenciación Celular/fisiología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Osteoblastos/citología , Proteína Relacionada con la Hormona Paratiroidea/biosíntesis , Proteína Relacionada con la Hormona Paratiroidea/genética , Factor de Transcripción Sp7/biosíntesis , Factor de Transcripción Sp7/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Development ; 143(7): 1205-16, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26903503

RESUMEN

We have previously shown that, in human and zebrafish, hypomorphic mutations of the gene encoding the retinoic acid (RA)-metabolizing enzyme Cyp26b1 result in coronal craniosynostosis, caused by an RA-induced premature transitioning of suture osteoblasts to preosteocytes, inducing ectopic mineralization of the suture's osteoid matrix. In addition, we showed that human CYP26B1 null patients have more severe and seemingly opposite skull defects, characterized by smaller and fragmented calvaria, but the cellular basis of these defects remained largely unclear. Here, by treating juvenile zebrafish with exogenous RA or a chemical Cyp26 inhibitor in the presence or absence of osteogenic cells or bone-resorbing osteoclasts, we demonstrate that both reduced calvarial size and calvarial fragmentation are also caused by RA-induced premature osteoblast-to-preosteocyte transitioning. During calvarial growth, the resulting osteoblast deprival leads to decreased osteoid production and thereby smaller and thinner calvaria, whereas calvarial fragmentation is caused by increased osteoclast stimulation through the gained preosteocytes. Together, our data demonstrate that RA-induced osteoblast-to-preosteocyte transitioning has multiple effects on developing bone in Cyp26b1 mutants, ranging from gain to loss of bone, depending on the allelic strength, the developmental stage and the cellular context.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Osteoblastos/citología , Osteocitos/citología , Osteogénesis/fisiología , Cráneo/embriología , Tretinoina/farmacología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Benzotiazoles/farmacología , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica , Metronidazol/farmacología , Osteoclastos/citología , Osteogénesis/genética , Ácido Retinoico 4-Hidroxilasa , Cráneo/anomalías , Triazoles/farmacología , Proteínas de Pez Cebra/antagonistas & inhibidores
5.
Dev Biol ; 365(2): 424-33, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22445510

RESUMEN

The zebrafish fin is an excellent system to study the mechanisms of dermal bone patterning. Fin rays are segmented structures that form successive bifurcations both during ontogenesis and regeneration. Previous studies showed that sonic hedgehog (shha) may regulate regenerative bone patterning based on its expression pattern and functional analysis. The present study investigates the role of the shha-expressing cells in the patterning of fin ray branches. The shha expression domain in the basal epidermis of each fin ray splits into two prior to ray bifurcation. In addition, the osteoblast proliferation profile follows the dynamic expression pattern of shha. A zebrafish transgenic line, 2.4shh:gfpABC#15, in which GFP expression recapitulates the endogenous expression of shha, was used to specifically ablate shha-expressing cells with a laser beam. Such ablations lead to a delay in the sequence of events leading to ray bifurcation without affecting the overall growth of the fin ray. These results suggest that shha-expressing cells direct localized osteoblast proliferation and thus regulate branching morphogenesis. This study reveals the fin ray as a new accessible system to investigate epithelial-mesenchymal interactions leading to organ branching.


Asunto(s)
Aletas de Animales/embriología , Tipificación del Cuerpo/fisiología , Proteínas Hedgehog/fisiología , Regeneración , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Aletas de Animales/citología , Aletas de Animales/efectos de la radiación , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/efectos de la radiación , Células Cultivadas , Proteínas Hedgehog/antagonistas & inhibidores , Rayos Láser , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...