Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 150: 213422, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37084636

RESUMEN

Encapsulated cell-based therapies involve the use of genetically-modified cells embedded in a material in order to produce a therapeutic agent in a specific location in the patient's body. This approach has shown great potential in animal model systems for treating diseases such as type I diabetes or cancer, with selected approaches having been tested in clinical trials. Despite the promise shown by encapsulated cell therapy, though, there are safety concerns yet to be addressed, such as the escape of the engineered cells from the encapsulation material and the resulting production of therapeutic agents at uncontrolled sites in the body. For that reason, there is great interest in the implementation of safety switches that protect from those side effects. Here, we develop a material-genetic interface as safety switch for engineered mammalian cells embedded into hydrogels. Our switch allows the therapeutic cells to sense whether they are embedded in the hydrogel by means of a synthetic receptor and signaling cascade that link transgene expression to the presence of an intact embedding material. The system design is highly modular, allowing its flexible adaptation to other cell types and embedding materials. This autonomously acting switch constitutes an advantage over previously described safety switches, which rely on user-triggered signals to modulate activity or survival of the implanted cells. We envision that the concept developed here will advance the safety of cell therapies and facilitate their translation to clinical evaluation.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Ingeniería , Animales , Mamíferos
2.
Sci Adv ; 7(25)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34134986

RESUMEN

Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Dependovirus/genética , Dependovirus/metabolismo , Terapia Genética/métodos , Vectores Genéticos/genética , Transducción Genética
3.
Immunity ; 53(5): 934-951.e9, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33159854

RESUMEN

Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos. Rig-I or Mda5 deficiency reduced HSPC numbers by inhibiting inflammatory signals that were in turn enhanced in Lgp2 deficient embryos. Simultaneous reduction of Lgp2 and either Rig-I or Mda5 rescued inflammatory signals and HSPC numbers. Modulating the expression of the signaling mediator Traf6 in RLR deficient embryos restored HSPC numbers. Repetitive element transcripts could be detected in hemogenic endothelial cells and HSPCs, suggesting a role as RLR ligands. Indeed, ectopic expression of repetitive elements enhanced HSPC formation in wild-type, but not in Rig-I or Mda5 deficient embryos. Manipulation of RLR expression in mouse fetal liver HSPCs indicated functional conservation among species. Thus, repetitive elements transcribed during development drive RLR-mediated inflammatory signals that regulate HSPC formation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Transducción de Señal , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Animales , Biomarcadores , Ensamble y Desensamble de Cromatina , Elementos Transponibles de ADN , Susceptibilidad a Enfermedades , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Inmunidad Innata , Inmunohistoquímica , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , ARN Helicasas/deficiencia , ARN Helicasas/genética , Proteínas de Unión al ARN/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Ácido Valproico/farmacología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA