Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pineal Res ; 74(3): e12854, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36692235

RESUMEN

Photoreceptors in the vertebrate eye are dependent on the retinal pigmented epithelium for a variety of functions including retinal re-isomerization and waste disposal. The light-sensitive pineal gland of fish, birds, and amphibians is evolutionarily related to the eye but lacks a pigmented epithelium. Thus, it is unclear how these functions are performed. Here, we ask whether a subpopulation of zebrafish pineal cells, which express glial markers and visual cycle genes, is involved in maintaining photoreceptors. Selective ablation of these cells leads to a loss of pineal photoreceptors. Moreover, these cells internalize exorhodopsin that is secreted by pineal rod-like photoreceptors, and in turn release CD63-positive extracellular vesicles (EVs) that are taken up by pdgfrb-positive phagocytic cells in the forebrain meninges. These results identify a subpopulation of glial cells that is critical for pineal photoreceptor survival and indicate the existence of cells in the forebrain meninges that receive EVs released by these pineal cells and potentially function in waste disposal.


Asunto(s)
Neuroglía , Células Fotorreceptoras de Vertebrados , Glándula Pineal , Percepción Visual , Animales , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Expresión Génica , Melatonina , Meninges/citología , Meninges/fisiología , Neuroglía/citología , Neuroglía/metabolismo , Células Fotorreceptoras/citología , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiología , Glándula Pineal/citología , Glándula Pineal/metabolismo , Rodopsina/metabolismo , Tetraspanina 30/metabolismo , Percepción Visual/genética , Percepción Visual/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo
2.
Front Physiol ; 12: 626080, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716772

RESUMEN

We report the presence of a rare cell type, the olfactory rod cell, in the developing zebrafish olfactory epithelium. These cells each bear a single actin-rich rod-like apical projection extending 5-10 µm from the epithelial surface. Live imaging with a ubiquitous Lifeact-RFP label indicates that the olfactory rods can oscillate. Olfactory rods arise within a few hours of the olfactory pit opening, increase in numbers and size during larval stages, and can develop in the absence of olfactory cilia. Olfactory rod cells differ in morphology from the known classes of olfactory sensory neuron, but express reporters driven by neuronal promoters. A sub-population of olfactory rod cells expresses a Lifeact-mRFPruby transgene driven by the sox10 promoter. Mosaic expression of this transgene reveals that olfactory rod cells have rounded cell bodies located apically in the olfactory epithelium and have no detectable axon. We offer speculation on the possible function of these cells in the Discussion.

3.
Philos Trans R Soc Lond B Biol Sci ; 369(1637): 20120462, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24446496

RESUMEN

The rise of zebrafish as a neuroscience research model organism, in conjunction with recent progress in single-cell resolution whole-brain imaging of larval zebrafish, opens a new window of opportunity for research on interval timing. In this article, we review zebrafish neuroanatomy and neuromodulatory systems, with particular focus on identifying homologies between the zebrafish forebrain and the mammalian forebrain. The neuroanatomical and neurochemical basis of interval timing is summarized with emphasis on the potential of using zebrafish to reveal the neural circuits for interval timing. The behavioural repertoire of larval zebrafish is reviewed and we demonstrate that larval zebrafish are capable of expecting a stimulus at a precise time point with minimal training. In conclusion, we propose that interval timing research using zebrafish and whole-brain calcium imaging at single-cell resolution will contribute to our understanding of how timing and time perception originate in the vertebrate brain from the level of single cells to circuits.


Asunto(s)
Conducta Animal/fisiología , Modelos Animales , Modelos Neurológicos , Prosencéfalo/anatomía & histología , Prosencéfalo/fisiología , Percepción del Tiempo/fisiología , Pez Cebra/fisiología , Animales , Ganglios Basales/anatomía & histología , Ganglios Basales/fisiología , Habénula/anatomía & histología , Habénula/fisiología , Larva/anatomía & histología , Larva/fisiología , Mamíferos/anatomía & histología , Mamíferos/fisiología , Neurotransmisores/metabolismo , Especificidad de la Especie , Factores de Tiempo , Pez Cebra/anatomía & histología
4.
PLoS One ; 8(11): e78261, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24250795

RESUMEN

Single cell techniques permit the analysis of cellular properties that are obscured by studying the average behavior of cell populations. One way to determine how gene expression contributes to phenotypic differences among cells is to combine functional analysis with transcriptional profiling of single cells. Here we describe a microfluidic device for monitoring the responses of single cells to a ligand and then collecting cells of interest for transcriptional profiling or other assays. As a test, cells from the olfactory epithelium of zebrafish were screened by calcium imaging to identify sensory neurons that were responsive to the odorant L-lysine. Single cells were subsequently recovered for transcriptional profiling by qRT-PCR. Responsive cells all expressed TRPC2 but not OMP, consistent with known properties of amino-acid sensitive olfactory neurons. The device can be adapted for other areas in biology where there is a need to sort and analyze cells based on their signaling responses.


Asunto(s)
Rastreo Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Neuronas Receptoras Olfatorias/metabolismo , Análisis de la Célula Individual/instrumentación , Animales , Calcio/química , Expresión Génica/genética , Ligandos , Lisina/administración & dosificación , Técnicas Analíticas Microfluídicas/métodos , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Análisis de la Célula Individual/métodos , Pez Cebra
5.
J Neurogenet ; 22(3): 211-28, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19039707

RESUMEN

The alarm response is an antipredator behavior displayed by many fish species and was first described 70 years ago. It is triggered through the olfactory system by substances released from injured skin and is characterized by dramatic, measurable changes in locomotion as well as physiology. We propose that this is an ideal time to revisit this response and to utilize it as an assay for understanding how neural circuits mediate innate fear. A suitable organism for these studies is the zebrafish, a genetic model with a rapidly expanding toolkit for molecular manipulation of the nervous system. Individual neurons mediating the response, ranging from receptor neurons to those in higher brain centers, should first be identified. New tools, specifically transgenic lines that allow spatial and temporal control of neural activity, provide a way to define and test the role of specific neurons, while genetic screens provide a route to identifying individual molecules essential for a normal response. Optical recording, which has proven successful in studies of information processing in the bulb, will provide valuable insights into neural circuitry function during the alarm response. When carried out on mutants, physiological analysis can provide insight into aspects of signal processing that are essential for normal behavior. The alarm response thus provides a paradigm to examine innate fear in a vertebrate system, enabling analysis at multiple levels from genes to the entire neural circuit. Additionally, the context dependency of the response can be utilized to investigate attention and decision making.


Asunto(s)
Reacción de Fuga/fisiología , Miedo/fisiología , Instinto , Modelos Genéticos , Animales , Atención/fisiología , Conducta Animal/fisiología , Reacción Cataléptica de Congelación/fisiología , Red Nerviosa/fisiología , Vías Olfatorias/citología , Células Receptoras Sensoriales/fisiología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...