Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 9(7): e14750, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33904648

RESUMEN

Physical exercise may improve hematological conditions in high altitude dwellers suffering from Chronic Mountain Sickness (CMS), in reducing hemoglobin concentration. Therefore, the present study aimed to characterize the effects of 1-month exercise training session in a model of rats exposed to chronic hypoxia. Four groups of male rats were studied: normoxic sedentary (NS, n = 8), normoxic training (NT, n = 8), hypoxic sedentary (HS, n = 8), and hypoxic training group (HT, n = 8). Hypoxic groups were exposed to hypobaric hypoxia for one month (PB =433 Torr). Training intensity was progressively increased from a running speed of 10.4 to 17.8 m/min. Chronic hypoxia led to an increase in hematocrit (HCT) associated with a decrease in plasma volume despite an increase in water intake. Training led to a reduction in HCT (p < 0.01), with a non-significant increase in plasma volume and weight gain. Hypoxia and training had inhibitory effects on haptoglobin (NS group: 379 ± 92; HT: 239 ± 34 µg/ml, p < 0.01). Chronic hypoxia and exercise training increased SpO2 measured after acute hypoxic exposure. Training blunted the decrease in V˙ O2 peak, time of exhaustion, and maximum speed associated with chronic exposure to hypoxia. Chronic hypoxia led to a right ventricular hypertrophy, which was not corrected by 1-month exercise training. Altogether, by decreasing hematocrit, reducing body weight, and limiting performance decrease, training in hypoxia may have a beneficial effect on excessive erythropoiesis in chronic hypoxia. Therefore, regular exercise training might be beneficial to avoid worsening of CMS symptoms in high altitude dwellers and to improve their quality of life.


Asunto(s)
Mal de Altura/fisiopatología , Hipoxia/fisiopatología , Condicionamiento Físico Animal/métodos , Mal de Altura/sangre , Mal de Altura/terapia , Animales , Peso Corporal , Hematócrito , Hipoxia/sangre , Hipoxia/terapia , Masculino , Consumo de Oxígeno , Volumen Plasmático , Ratas , Ratas Sprague-Dawley , Remodelación Ventricular
2.
Adv Exp Med Biol ; 1071: 95-102, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357739

RESUMEN

The carotid body (CB) chemoreceptors sense changes in arterial blood gases. Upon stimulation CB chemoreceptors cells release one or more transmitters to excite sensory nerve fibers of the carotid sinus nerve. While several neurotransmitters have been described to contribute to the CB chemosensory process less is known about modulatory molecules. Recent data suggest that erythropoietin (Epo) is involved in the control of ventilation, and it has been shown that Epo receptor is constitutively expressed in the CB chemoreceptors, suggesting a possible role for Epo in regulation of CB function. Therefore, in the present study we aimed to determine whether exogenous applications of Epo modulate the hypoxic and hypercapnic CB chemosensory responses. Carotid sinus nerve discharge was recorded in-situ from anesthetized adult male and female Sprague Dawley rats (350 g, n = 8) before and after systemic administration of Epo (2000 UI/kg). CB-chemosensitivity to hypoxia and hypercapnia was calculated by exposing the rat to FiO2 5-15% and FiCO2 10% gas mixtures, respectively. During baseline recordings at normoxia, we found no effects of Epo on CB activity both in male and female rats. In addition, Epo had no effect on maximal CB response to hypoxia in both male and female rats. Epo injections enhanced the maximum CB chemosensory response to hypercapnia in female rats (before vs. after Epo, 72.5 ± 7.1 Hz vs. 108.3 ± 6.9 Hz, p < 0.05). In contrast, Epo had no effect on maximum CB chemosensory response to hypercapnia in male rats but significantly increased the response recovery times (time required to return to baseline discharge following hypercapnic stimulus) from 2.1 ± 0.1 s to 8.2 ± 2.3 s (p < 0.05). Taken together, our results suggest that Epo has some modulatory effect on the CB chemosensory response to hypercapnia.


Asunto(s)
Cuerpo Carotídeo/fisiología , Células Quimiorreceptoras/fisiología , Eritropoyetina/farmacología , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA