Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol J ; 39(4): 351-360, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37550981

RESUMEN

Citrus melanose, caused by Diaporthe citri, has been one of the serious diseases, and chemical fungicides were used for protection in many citrus orchards of Jeju Island. Establishing a disinfectant resistance management system and reducing pesticide usage would be important for contributing to safe agricultural production. In this study, monitoring of chemical resistance was performed with 40 representative D. citri isolates from many citrus orchards in Jeju Island. Four different fungicides, kresoxim-methyl, benomyl, fluazinam, and prochloraz manganese, with seven different concentrations were tested in vitro by growing the mycelium of the fungal isolates on the artificial medium potato dextrose agar. Among the 40 fungal isolates, 12 isolates were investigated as resistant to kresoxim-methyl which could not inhibit the mycelium growth to more than 50%. Especially isolate NEL21-2 was also resistant against benomyl, whose hyphae grew well even on the highest chemical concentration. However, any chemical resistance of fungal isolates was found against neither fluazinam nor prochloraz manganese. On the other hand, in vivo bio-testing of some resistant isolates was performed against both kresoxim-methyl and benomyl on young citrus leaves. Typical melanose symptoms developed on the citrus leaves pre-treated with both agrochemicals after inoculation with the resistant isolates. However, no or less symptoms were observed when the susceptible isolates were inoculated. Based on these results, it was suggested that some resistant isolates of D. citri occurred against both systemic fungicides, which may be valuable to build a strategy for protecting citrus disease.

2.
Mol Med Rep ; 28(3)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37449501

RESUMEN

Exosomes isolated from potato (Solanum tuberosum) exhibit the biophysical characteristics of exosomes observed in mammalian cells and microorganisms, as determined by dynamic light scattering analysis and transmission electron microscopy. In the present study, it was shown that potato exosomes (ExoPs) can penetrate keratinocyte HaCaT cells, as determined by confocal microscopy and flow cytometry. In addition, ExoPs can suppress the expression of the collagen­destroying enzymes MMP1, 2 and 9, and the inflammatory cytokines IL6 and TNF­α, while inducing the expression of glutathione S­transferase α 4, a cellular detoxifying enzyme, as revealed by reverse transcription­quantitative PCR. Furthermore, ExoPs promote HaCaT cell proliferation, exhibit in vitro antioxidant activity against the free radical 2,2­diphenyl­ß­picrylhydrazyl, and protect cells from hydrogen peroxide­induced cytotoxicity. ExoPs can also minimize the induction of photodamage initiated by ultraviolet B (UVB) irradiation, and have the tendency to cure the photodamage already incurred on cells by UVB irradiation. ExoPs also prevent collagen degradation as observed in the culture media of UVB­irradiated HaCaT cells. Collectively, ExoPs may protect and ameliorate photodamage in keratinocyte HaCaT cells.


Asunto(s)
Exosomas , Solanum tuberosum , Humanos , Línea Celular , Colágeno/metabolismo , Células HaCaT , Queratinocitos/metabolismo , Mamíferos , Rayos Ultravioleta/efectos adversos
3.
Plant Pathol J ; 37(4): 347-355, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34365746

RESUMEN

Ripe rot caused by Botryosphaeria dothidea is one of the serious diseases of postharvest kiwifruit. In order to control ripe rot on Actinidia chinensis cultivar 'Zesy002', several commercial agrofungicides were selected by an antifungal test on an artificial medium. Furthermore, disease suppression by the selected fungicides was evaluated on the kiwifruit by inoculation with a conidial suspension of B. dothidea. On the artificial media containing boscalid + fludioxonil was shown to be the most effective antifungal activity. However, in the bio-test pyraclostrobin + boscalid and iminoctadine-tris were the most effective agrochemicals on the fruit. On the other hand, the infection structures of B. dothidea on kiwifruit treated with pyraclostrobin + boscalid were observed with a fluorescent microscope. Most of the fungal conidia had not germinated on the kiwifruit treated with the agrochemicals whereas on the untreated fruit the fungal conidia had mostly germinated. Electron microscopy of the fine structures showed morphological changes to the conidia and branch of hyphae on the kiwifruit pre-treated with pyraclostrobin + boscalid, indicating its suppression effect on fungal growth. Based on this observation, it is suggested that ripe rot by B. dothidea may be suppressed through the inhibition of conidial germination on the kiwifruit treated with the agrochemicals.

5.
Plant Pathol J ; 36(4): 335-345, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32788892

RESUMEN

Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSBmediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.

6.
Plant Pathol J ; 35(5): 417-424, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31632217

RESUMEN

Melanose, caused by Diaporthe citri, is one of severe diseases in citrus, a major economic resource in Jeju island. To reduce the usage amount of organic synthetic fungicide, bio-sulfur was tested as an alternative chemical to control citrus melanose in the present study. Direct antifungal activity of bio-sulfur against D. citri was determined through in vitro experiment using artificial nutrient media. Disease severity of melanose on bio-sulfur pretreated citrus leaves was lower than that on untreated ones. To illustrate the mechanism of disease suppression by bio-sulfur, infection structures were observed with a fluorescent microscope and a scanning electron microscope. In fluorescent microscopic observation, most conidia rarely germinated. In addition, hyphal growth on leaves pretreated with bio-sulfur was inhibited compared to that on untreated ones. In scanning electron microscope images of bio-sulfur pretreated leaves, surfaces of most conidia were shrunk while hyphae were morphologically changed and frequently branched. Such microscopic observations were also found for leaves pretreated with a commercial fungicide Dithianon. These results suggest that bio-sulfur may be used to control citrus melanose as an environment friendly alternative to organic synthetic fungicides.

7.
Mycobiology ; 47(3): 308-318, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31565467

RESUMEN

Bio-sulfur can be produced in the process of desulfurization from a landfill and collected by some microorganism such as Thiobacillus sp. as a sulfur element. In order to investigate practical use of bio-sulfur as an agent for controlling plant disease, in vitro antifungal activity of bio-sulfur was tested against Colletotrichum orbiculare known to cause cucumber anthracnose. Efficacy of bio-sulfur for suppressing anthracnose disease was also evaluated in vivo using cucumber leaves. Mycelial growth of C. orbiculare on medium containing bio-sulfur was inhibited. Disease severity of cucumber leaves pre-treated with bio-sulfur was significantly decreased compared to that of untreated ones. To illustrate how bio-sulfur could suppress anthracnose disease, structures of cucumber leaves infected with C. orbiculare were observed under a fluorescent microscope and a scanning electron microscope (SEM). Cucumber leaves pre-treated with bio-sulfur showed a low rate of appressorium formation whereas untreated ones showed abundant appressoria. Shrunk fungal hyphae were mostly observed on bio-sulfur-pretreated leaves by SEM. Similar results were observed on leaves pre-treated with a commercial fungicide Benomyl®. These results suggest that inhibition of appressorium formation of C. orbiculare by bio-sulfur may contribute to its suppression of cucumber anthracnose.

8.
Plant Pathol J ; 34(2): 113-120, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628817

RESUMEN

Chlorella, one single-cell green algae organism that lives autotrophically by photosynthesis, can directly suppress some plant diseases. The objective of this study was to determine whether pre-spraying with Chlorella fusca suspension could induce systemic acquired resistance (SAR) in cucumber plants against anthracnose caused by Colletotrichum orbiculare. In order to illustrate SAR induced by algae, infection structures in host cells were observed under a transmission electron microscope (TEM). Cytological changes as defense responses of host mesophyll cells such as accumulation of vesicles, formation of sheath around penetration hyphae, and thickness of cell wells adjoining with intracellular hyphae were demonstrated in cucumber leaves. Similar defense responses were also found in the plant pre-treated with DL-3-aminobutyric acid, another SAR priming agent. Images showed that defense response of host cells was scarcely observed in untreated leaf tissues. These cytological observations suggest that C. fusca could induce SAR against anthracnose in cucumber plants by activating defense responses of host cells.

9.
Plant Pathol J ; 33(6): 582-588, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29238281

RESUMEN

The objective of this study was to determine inhibitory activities of four volatile plant essential oils (cinnamon oil, fennel oil, origanum oil and thyme oil) on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt of strawberry plants. Results showed that these essential oils inhibited in vitro conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in a dose-dependent manner. Cinnamon oil was found to be most effective one in suppressing conidial germination while fennel oil, origanum oil and thyme oil showed moderate inhibition of conidial germination at similar levels. Cinnamon oil, origanum oil and thyme oil showed moderate antifungal activities against mycelial growth at similar levels while fennel oil had relatively lower antifungal activity against mycelial growth. Antifungal effects of these four plant essential oils in different combinations on in vitro fungal growth were also evaluated. These essential oils demonstrated synergistic antifungal activities against conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in vitro. Simultaneous application of origanum oil and thyme oil enhanced their antimicrobial activities against conidial germination and fungal mycelial growth. These results underpin that volatile plant essential oils could be used in eco-friendly integrated disease management of Fusarium wilt in strawberry fields.

10.
Plant Pathol J ; 31(4): 343-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26672670

RESUMEN

Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most important bacterial diseases of citrus. Because citrus canker is not found in many countries including European Union and Australia, Xcc is strictly regulated in order to prevent its spread. In this study, the effects of X-irradiation on Xcc growth either in the suspension or on the surface of citrus fruits were investigated. The suspension containing 1×10(7) cfu/ml of Xcc was irradiated with different absorbed doses of X-irradiation ranging from 50 to 400 Gy. The results showed that Xcc was fully dead at 400 Gy of X-irradiation. To determine the effect of X-irradiation on quarantine, the Xcc-inoculated citrus fruits were irradiated with different X-ray doses at which Xcc was completely inhibited by an irradiation dose of 250 Gy. The D10 value for Xcc on citrus fruits was found to be 97 Gy, indicating the possibility of direct application on citrus quarantine without any side sterilizer. Beside, presence of Xcc on the surface of asymptomatic citrus fruits obtained from citrus canker-infected orchards was noted. It indicated that the exporting citrus fruits need any treatment so that Xcc on the citrus fruits should be completely eliminated. Based on these results, ionizing radiation can be considered as an alternative method of eradicating Xcc for export of citrus fruits.

11.
Plant Pathol J ; 31(3): 269-77, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26361475

RESUMEN

Anthracnose caused by Colletotrichum gloeosporioides has been destructive during pepper fruit production in outdoor fields in Korea. In vitro antifungal activities of 15 different plant essential oils or its components were evaluated during conidial germination and mycelial growth of C. gloeosporioides. In vitro conidial germination was most drastically inhibited by vapour treatments with carvacrol, cinnamon oil, trans-cinnamaldehyde, citral, p-cymene and linalool. Inhibition of the mycelial growth by indirect vapour treatment with essential oils was also demonstrated compared with untreated control. Carvacrol, cinnamon oil, trans-cinnamaldehyde, citral and eugenol were among the most inhibitory plant essential oils by the indirect antifungal efficacies. Plant protection efficacies of the plant essential oils were demonstrated by reduced lesion diameter on the C. gloeosporioides-inoculated immature green pepper fruits compared to the inoculated control fruits without any plant essential oil treatment. In planta test showed that all plant essential oils tested in this study demonstrated plant protection efficacies against pepper fruit anthracnose with similar levels. Thus, application of different plant essential oils can be used for eco-friendly disease management of anthracnose during pepper fruit production.

12.
J Microbiol ; 52(10): 879-83, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25269607

RESUMEN

Citrus melanose is one of the most important diseases in orchards cultivating citrus in the world. Although the disease does not cause yield loss, the profitability of the infected fruits is often reduced in the fresh-market, resulting in economic loss. In this study, disease reduction was proven by pre-treatment with Pseudomonas putida strain THJ609-3. In order to illustrate mechanism of the disease reduction by the bacterial strain, the infection behaviors of Diaporthe citri and necrosis deposit of plant tissue were observed using a fluorescence microscope. On the leaves pre-treated with the strain THJ609-3, germination rates of D. citri conidia were significantly decreased compared to those of the untreated control. Scanning electron microscopical observations showed that bacterial cells were attached to the surface of fungal hyphae. Furthermore, morphological change of germ tubes of the conidia was detected. These results suggest that the disease reduction may be caused by the direct antifungal activity of the bacterial strain on the leaf surfaces.


Asunto(s)
Antibiosis , Ascomicetos/crecimiento & desarrollo , Citrus/microbiología , Pseudomonas putida/fisiología , Ascomicetos/ultraestructura , Adhesión Bacteriana , Hifa/crecimiento & desarrollo , Hifa/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Pseudomonas putida/crecimiento & desarrollo
13.
J Microbiol ; 52(5): 422-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24723102

RESUMEN

Importing citrus fruits infected by Asiatic citrus canker caused by Xanthomonas citri pv. citri (Xcc) can act as an inoculum source for the disease epidemic in citrus canker-free countries. In this study, the pathogenicity of the causal agent of Asiatic citrus canker surviving on infected Satsuma mandarin fruits was evaluated. The washing solution of infected Satsuma mandarin fruits did not cause lesion formation on the citrus leaves. However, a typical citrus canker lesion was formed on the leaves after inoculation with higher concentrations of the inoculum from the washing solution (washing solution II). It indicated that the pathogenicity of the citrus canker surviving on the symptomatic Satsuma mandarin fruits was not changed. Scanning electron microscopic observation showed that the numbers of bacterial cells on the leaves of Satsuma mandarin which inoculated with the washing solution directly (washing solution I) was less compared to those of leaves inoculated with the washing solution II. This result spports that the pathogenicity of Xcc surviving on Satsuma mandarin fruits may not be changed but that the sucessful infection of citrus caker may depend on the concentration of the inoculum.


Asunto(s)
Citrus/microbiología , Frutas/microbiología , Xanthomonas/aislamiento & purificación , Carga Bacteriana , Microscopía Electrónica de Rastreo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología
14.
Phytopathology ; 104(8): 834-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24502209

RESUMEN

Induced systemic resistance (ISR) can be activated by biotic agents, including root-associated beneficial bacteria to inhibit pathogen infection. We investigated priming-mediated ISR in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare (causal fungus of anthracnose). In addition, we examined whether this ISR expression was bacterial density-dependent by assessing peroxidase activity in the presence and absence of the pathogen. As a result, root treatment with the ISR-eliciting strains GC-B19 and MM-B22 or the chemical inducer DL-ß-amino-n-butyric acid (positive control) significantly inhibited fungal infection process (conidial germination and appressorium formation) and disease severity compared with the non-ISR-eliciting strain, Pseudomonas aeruginosa PK-B09 (negative control), and MgSO4 solution (untreated control). These treatments effectively induced rapid elicitation of hypersensitive reaction-like cell death with H2O2 generations, and accumulation of defense-related enzymes (ß-1,3-glucanase, chitinase, and peroxidase) in cucumber leaves in the "primed" state against C. orbiculare. In addition, ISR expression was dependent on the bacterial cell density in the rhizosphere. This ISR expression was derived from the presence of sustained bacterial populations ranging from 10(4) to 10(6) cells/g of potting mix over a period of time after introduction of bacteria (10(6) to 10(10) cells/g of potting mix) into the rhizosphere. Taken together, these results suggest that priming-mediated ISR against C. orbiculare in cucumber can be induced in a bacterial density-dependent manner by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22.


Asunto(s)
Colletotrichum/fisiología , Cucumis sativus/inmunología , Resistencia a la Enfermedad , Paenibacillus/fisiología , Enfermedades de las Plantas/inmunología , Pseudomonas/fisiología , Secuencia de Bases , Quitinasas/metabolismo , Cucumis sativus/enzimología , Cucumis sativus/microbiología , Cucumis sativus/fisiología , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Regulación de la Expresión Génica de las Plantas , Glucano 1,3-beta-Glucosidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Datos de Secuencia Molecular , Paenibacillus/genética , Paenibacillus/aislamiento & purificación , Peroxidasa/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Hojas de la Planta/enzimología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Rizosfera , Análisis de Secuencia de ADN
15.
Mycobiology ; 36(4): 236-41, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23997633

RESUMEN

The colonization of an arbuscular mycorrhizal fungus Glomus intraradices BEG110 in the soil caused a decrease in disease severity in cucumber plants after fungal inoculation with Colletotrichum orbiculare. In order to illustrate the resistance mechanism mediated by G. intraradices BEG110, infection patterns caused by C. orbiculare in the leaves of cucumber plants and the host cellular responses were characterized. These properties were characterized using transmission electron microscopy on the leaves of cucumber plants grown in soil colonized with G. intraradices BEG110. In the untreated plants, inter- and intra-cellular fungal hyphae were observed throughout the leaf tissues during both the biotrophic and necrotrophic phases of infection. The cytoplasm of fungal hyphae appeared intact during the biotrophic phase, suggesting no defense response against the fungus. However, several typical resistance responses were observed in the plants when treated with G. intraradices BEG110 including the formation of sheaths around the intracellular hyphae or a thickening of host cell walls. These observations suggest that the resistance mediated by G. intraradices BEG110 most often occurs in the symplast of the host cells rather than in the apoplast. In addition, this resistance is similar to those mediated by biotic inducers such as plant growth promoting rhizobacteria.

16.
Mycobiology ; 34(2): 67-72, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24039473

RESUMEN

Efficacy of resistance induction by the bacterial isolates Pseudomonas putida (TRL2-3), Micrococcus luteus (TRK2-2) and Flexibacteraceae bacterium (MRL412), which were isolated from the rhizosphere of plants growing in Jeju Mountain, were tested in a greenhouse. The disease severity caused by Phytophthora infestans was effectively reduced in the potato plants pre-inoculated with bacterial isolates compared with those of the untreated control plants growing in a greenhouse. In order to estimate the level of protection by the bacterial isolates, Mancozeb WP (Diesen M®, Kyong nong) and DL-3-amino butyric acid (BABA) were pre-treated, whereas Dimethomorph WP (Forum®, Kyong nong) and phosphonic acid (H3PO3) were post-treated the challenge inoculation with the pathogen. Disease severities of chemical pre-treated as well as post-treated plants were reduced compare to those of the untreated. The disease reduction in the plants pre-treated with Mancozeb WP was the highest, whereas that of post-treated with Dimethomorph WP was the lowest. The yields of plants pre-inoculated with three bacterial isolates were greatly increased than those of control plants. These results suggest that biological control by bacterial isolates might be an alternative strategy against late blight disease in potato plants growing in greenhouse.

17.
Mycobiology ; 33(3): 131-6, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24049488

RESUMEN

Infection structures were observed at the penetration sites on the leaves of cucumber plants inoculated with Colletotrichum orbiculare using a fluorescence microscope. The cucumber plants were previously drenched with suspension of bacterial strains Pseudomonas putida or Micrococcus luteus. The plants pre-inoculated with both bacterial strains were resistant against anthracnose after inoculation with C. orbiculare. To investigate the resistance mechanism by both bacterial strains, the surface of infected leaves was observed at the different time after challenge inoculation. At 3 days after inoculation there were no differences in the germination and appressorium formation of conidia of C. orbiculare as well as in the callose formation of the plants between both bacteria pre-inoculated and non-treated. At 5 days, the germination and appressorium formation of the fungal conidia were, however, significantly decreased on the leaves of plants pre-inoculated with M. luteus at the concentration with 1.0 × 10(7) cfu/ml. Furthermore, callose formation of plants cells at the penetration sites was apparently increased. In contrast, there were no defense reactions of the plants at the concentration with 1.0 × 10(6) cfu/ml of M. luteus. Similarly, inoculation P. putida caused no plant resistance at the low concentration, whereas increase of callose formation was observed at the higher concentration. The results of this study suggest that the resistant mechanisms might be differently expressed by the concentration of pre-treatment with bacterial suspension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...