Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Heart Assoc ; : e032888, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874078

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) ultimately leads to right ventricular failure and premature death. The identification of circulating biomarkers with prognostic utility is considered a priority. As chronic inflammation is recognized as key pathogenic driver, we sought to identify inflammation-related circulating proteins that add incremental value to current risk stratification models for long-term survival in patients with PAH. METHODS AND RESULTS: Plasma levels of 384 inflammatory proteins were measured with the proximity extension assay technology in patients with PAH (n=60) and controls with normal hemodynamics (n=28). Among these, 51 analytes were significantly overexpressed in the plasma of patients with PAH compared with controls. Cox proportional hazard analyses and C-statistics were performed to assess the prognostic value and the incremental prognostic value of differentially expressed proteins. A panel of 6 proteins (CRIM1 [cysteine rich transmembrane bone morphogenetic protein regulator 1], HGF [hepatocyte growth factor], FSTL3 [follistatin-like 3], PLAUR [plasminogen activator, urokinase receptor], CLSTN2 [calsyntenin 2], SPON1 [spondin 1]) were independently associated with death/lung transplantation at the time of PAH diagnosis after adjustment for the 2015 European Society of Cardiology/European Respiratory Society guidelines, the REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) 2.0 risk scores, and the refined 4-strata risk assessment. CRIM1, PLAUR, FSTL3, and SPON1 showed incremental prognostic value on top of the predictive models. As determined by Western blot, FSTL3 and SPON1 were significantly upregulated in the right ventricle of patients with PAH and animal models (monocrotaline-injected and pulmonary artery banding-subjected rats). CONCLUSIONS: In addition to revealing new actors likely involved in cardiopulmonary remodeling in PAH, our screening identified promising circulating biomarkers to improve risk prediction in PAH, which should be externally confirmed.

2.
Am J Respir Cell Mol Biol ; 68(5): 537-550, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36724371

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling of small pulmonary arteries (PAs) causing sustained elevation of PA pressure, right ventricular failure, and death. Similar to cancer cells, PA smooth muscle cells (PASMCs), which play a key role in pulmonary vascular remodeling, have adopted multiple mechanisms to sustain their survival and proliferation in the presence of stress. The histone methyltransferase G9a and its partner protein GLP (G9a-like protein) have been shown to exert oncogenic effects and to serve as a buffer against an exaggerated transcriptional response. Therefore, we hypothesized that upregulation of G9a and GLP in PAH plays a pivotal role in pulmonary vascular remodeling by maintaining the abnormal phenotype of PAH-PASMCs. We found that G9a is increased in PASMCs from patients with PAH as well as in remodeled PAs from animal models. Pharmacological inhibition of G9a/GLP activity using BIX01294 and UNC0642 significantly reduced the prosurvival and proproliferative potentials of cultured PAH-PASMCs. Using RNA sequencing, further exploration revealed that G9a/GLP promotes extracellular matrix production and affords protection against the negative effects of an overactive stress response. Finally, we found that therapeutic treatment with BIX01294 reduced pulmonary vascular remodeling and lowered mean PA pressure in fawn-hooded rats. Treatment of Sugen/hypoxia-challenged mice with BIX01294 also improved pulmonary hemodynamics and right ventricular function. In conclusion, these findings indicate that G9a/GLP inhibition may represent a new therapeutic approach in PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Ratas , Ratones , Animales , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Remodelación Vascular , Proliferación Celular , Hipertensión Pulmonar Primaria Familiar , Modelos Animales de Enfermedad , Miocitos del Músculo Liso , Arteria Pulmonar
3.
Eur J Med Chem ; 236: 114330, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35436670

RESUMEN

Pramlintide is an equipotent amylin analogue that reduces food intake and body weight in obese subjects and has been clinically approved as an adjunctive therapy for the treatment of adult diabetic patients. However, due to its extremely short half-life in vivo, a regimen of multiple daily administrations is required for achieving clinical effectiveness. Herein is described the development of prototypical long-acting pramlintide bioconjugates, in which pramlintide's disulfide-linked macrocycle was replaced by a cyclic thioether motif. This modification enabled stable chemical conjugation to a half-life extending antibody. In contrast to pramlintide (t1/2 < 0.75 h), bioconjugates 35 and 38 have terminal half-lives of ∼2 days in mice and attain significant exposure levels that are maintained up to 7 days. Single dose subcutaneous administration of 35 in lean mice, given 18-20 h prior to oral acetaminophen (AAP) administration, significantly reduced gastric emptying (as determined by plasma AAP levels). In a separate study, similar administration of 35 in fasted lean mice effected a reduction in food intake for up to 48 h. These data are consistent with durable amylinomimetic responses and provide the basis for further development of such long-acting amylinomimetic conjugates for the potential treatment of obesity and associated pathologies.


Asunto(s)
Agonistas de los Receptores de Amilina , Agonistas de los Receptores de Amilina/farmacología , Agonistas de los Receptores de Amilina/uso terapéutico , Amiloide , Animales , Peso Corporal , Humanos , Hipoglucemiantes/uso terapéutico , Polipéptido Amiloide de los Islotes Pancreáticos/farmacología , Ratones , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico
4.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33803922

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by a sustained elevation of pulmonary artery (PA) pressure, right ventricular failure, and premature death. Enhanced proliferation and resistance to apoptosis (as seen in cancer cells) of PA smooth muscle cells (PASMCs) is a major pathological hallmark contributing to pulmonary vascular remodeling in PAH, for which current therapies have only limited effects. Emerging evidence points toward a critical role for Enhancer of Zeste Homolog 2 (EZH2) in cancer cell proliferation and survival. However, its role in PAH remains largely unknown. The aim of this study was to determine whether EZH2 represents a new factor critically involved in the abnormal phenotype of PAH-PASMCs. We found that EZH2 is overexpressed in human lung tissues and isolated PASMCs from PAH patients compared to controls as well as in two animal models mimicking the disease. Through loss- and gain-of-function approaches, we showed that EZH2 promotes PAH-PASMC proliferation and survival. By combining quantitative transcriptomic and proteomic approaches in PAH-PASMCs subjected or not to EZH2 knockdown, we found that inhibition of EZH2 downregulates many factors involved in cell-cycle progression, including E2F targets, and contributes to maintain energy production. Notably, we found that EZH2 promotes expression of several nuclear-encoded components of the mitochondrial translation machinery and tricarboxylic acid cycle genes. Overall, this study provides evidence that, by overexpressing EZH2, PAH-PASMCs remove the physiological breaks that normally restrain their proliferation and susceptibility to apoptosis and suggests that EZH2 or downstream factors may serve as therapeutic targets to combat pulmonary vascular remodeling.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/genética , Proteoma/genética , Hipertensión Arterial Pulmonar/genética , Transcriptoma/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Ciclo del Ácido Cítrico/genética , Epigénesis Genética/genética , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/crecimiento & desarrollo , Arteria Pulmonar/patología , Ratas
5.
Nat Chem Biol ; 12(11): 896-898, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27595330

RESUMEN

The With-No-Lysine (K) (WNK) kinases play a critical role in blood pressure regulation and body fluid and electrolyte homeostasis. Herein, we introduce the first orally bioavailable pan-WNK-kinase inhibitor, WNK463, that exploits unique structural features of the WNK kinases for both affinity and kinase selectivity. In rodent models of hypertension, WNK463 affects blood pressure and body fluid and electro-lyte homeostasis, consistent with WNK-kinase-associated physiology and pathophysiology.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Imidazoles/farmacología , Riñón/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirrolidinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sistema Cardiovascular/metabolismo , Humanos , Imidazoles/química , Riñón/metabolismo , Pruebas de Función Renal , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Pirrolidinas/química , Ratas , Ratas Sprague-Dawley , Bibliotecas de Moléculas Pequeñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...