Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 11(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669119

RESUMEN

Kefir is an acidic, carbonated, and fermented dairy product produced by fermenting milk with kefir grains. The Lactobacillus species constitutes an important part of kefir grains. In a previous animal study, kefir effectively improved exercise performance and had anti-fatigue effects. The purpose of this research was to explore the benefits of applying kefir to improve exercise performance, reduce fatigue, and improve physiological adaptability in humans. The test used a double-blind crossover design and supplementation for 28 days. Sixteen 20-30 year-old subjects were divided into two groups in a balanced order according to each individual's initial maximal oxygen uptake and were assigned to receive a placebo (equal flavor, equal calories, 20 g/day) or SYNKEFIR™ (20 g/day) every morning. After the intervention, there were 28 days of wash-out, during which time the subjects did not receive further interventions. After supplementation with SYNKEFIR™, the exercise time to exhaustion was significantly greater than that before ingestion (p = 0.0001) and higher than that in the Placebo group by 1.29-fold (p = 0.0004). In addition, compared with the Placebo group, the SYNKEFIR™ administration group had significantly lower lactate levels in the exercise and recovery (p < 0.05). However, no significant difference was observed in the changes in the gut microbiota. Although no significant changes in body composition were found, SYNKEFIR™ did not cause adverse reactions or harm to the participants' bodies. In summary, 28 days of supplementation with SYNKEFIR™ significantly improved exercise performance, reduced the production of lactic acid after exercise, and accelerated recovery while also not causing any adverse reactions.

2.
Int J Med Sci ; 18(2): 564-574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390826

RESUMEN

Fatigue may cause the efficiency of the organ in human body to decrease, which may affect the daily life and exercise performance of the general people and athletes. Mare's milk powder (MMP) is a lactose rich supplement. The research of the study is to evaluate the whether MMP has anti-fatigue effect. Forty male ICR mice were randomly divided into four group to receive vehicle or MMP by oral gavage at 0 (Vehicle), 0.27 (MMP-1X), 0.54 (MMP-2X), 1.35 (MMP-5X) g/kg/day for 14 days. The forelimb grip of the MMP-2X, and MMP-5X group were significantly higher than the vehicle group. The swim-to-exhaustion times of the MMP-1X, MMP-2X, and MMP-5X group were significantly greater than the vehicle group. Glycogen levels in liver and muscle were significantly larger in the MMP-1X, MMP-2X, and MMP-5X groups than the vehicle group. Receive MMP supplement for 14 days can promoting exercise performance and amelioration of exercise-induced fatigue.


Asunto(s)
Suplementos Dietéticos , Fatiga/dietoterapia , Caballos , Leche/química , Aptitud Física , Animales , Modelos Animales de Enfermedad , Fatiga/etiología , Femenino , Humanos , Lactosa/administración & dosificación , Masculino , Ratones , Ratones Endogámicos ICR , Condicionamiento Físico Animal
3.
PeerJ ; 8: e9717, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32904158

RESUMEN

BACKGROUND: Inertial sensors, such as accelerometers, serve as convenient devices to predict the energy expenditures (EEs) during physical activities by a predictive equation. Although the accuracy of estimate EEs especially matter to athletes receive physical training, most EE predictive equations adopted in accelerometers are based on the general population, not athletes. This study included the heart rate reserve (HRR) as a compensatory parameter for physical intensity and derived new equations customized for sedentary, regularly exercising, non-endurance athlete, and endurance athlete adults. METHODS: With indirect calorimetry as the criterion measure (CM), the EEs of participants on a treadmill were measured, and vector magnitudes (VM), as well as HRR, were simultaneously recorded by a waist-worn accelerometer with a heart rate monitor. Participants comprised a sedentary group (SG), an exercise-habit group (EHG), a non-endurance group (NEG), and an endurance group (EG), with 30 adults in each group. RESULTS: EE predictive equations were revised using linear regression with cross-validation on VM, HRR, and body mass (BM). The modified model demonstrates valid and reliable predictions across four populations (Pearson correlation coefficient, r: 0.922 to 0.932; intraclass correlation coefficient, ICC: 0.919 to 0.930). CONCLUSION: Using accelerometers with a heart rate monitorcan accurately predict EEs of athletes and non-athletes with an optimized predictive equation integrating the VM, HRR, and BM parameters.

4.
Sci Rep ; 10(1): 8816, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483254

RESUMEN

Due to the nature of micro-electromechanical systems, the vector magnitude (VM) activity of accelerometers varies depending on the wearing position and does not identify different levels of physical fitness. Without an appropriate energy expenditure (EE) estimation equation, bias can occur in the estimated values. We aimed to amend the EE estimation equation using heart rate reserve (HRR) parameters as the correction factor, which could be applied to athletes and non-athletes who primarily use ankle-mounted devices. Indirect calorimetry was used as the criterion measure with an accelerometer (ankle-mounted) equipped with a heart rate monitor to synchronously measure the EE of 120 healthy adults on a treadmill in four groups. Compared with ankle-mounted accelerometer outputs, when the traditional equation was modified using linear regression by combining VM with body weight and/or HRR parameters (modified models: Model A, without HRR; Model B, with HRR), both Model A (r: 0.931 to 0.972; ICC: 0.913 to 0.954) and Model B (r: 0.933 to 0.975; ICC: 0.930 to 0.959) showed the valid and reliable predictive ability for the four groups. With respect to the simplest and most reasonable mode, Model A seems to be a good choice for predicting EE when using an ankle-mounted device.


Asunto(s)
Acelerometría/instrumentación , Atletas , Metabolismo Energético , Frecuencia Cardíaca , Tobillo , Metabolismo Basal , Composición Corporal , Peso Corporal , Calorimetría Indirecta , Entrenamiento Aeróbico , Prueba de Esfuerzo , Estudios de Factibilidad , Femenino , Humanos , Modelos Lineales , Masculino , Modelos Biológicos , Aptitud Física , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...