Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 12(8): 5139-5158, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513247

RESUMEN

A technique using Linnik-based optical coherence microscopy (OCM), with built-in fluorescence microscopy (FM), is demonstrated here to describe cellular-level morphology for fresh porcine and biobank tissue specimens. The proposed method utilizes color-coding to generate digital pseudo-H&E (p-H&E) images. Using the same camera, colocalized FM images are merged with corresponding morphological OCM images using a 24-bit RGB composition process to generate position-matched p-H&E images. From receipt of dissected fresh tissue piece to generation of stitched images, the total processing time is <15 min for a 1-cm2 specimen, which is on average two times faster than frozen-section H&E process for fatty or water-rich fresh tissue specimens. This technique was successfully used to scan human and animal fresh tissue pieces, demonstrating its applicability for both biobank and veterinary purposes. We provide an in-depth comparison between p-H&E and human frozen-section H&E images acquired from the same metastatic sentinel lymph node slice (∼10 µm thick), and show the differences, like elastic fibers of a tiny blood vessel and cytoplasm of tumor cells. This optical sectioning technique provides histopathologists with a convenient assessment method that outputs large-field H&E-like images of fresh tissue pieces without requiring any physical embedment.

2.
Opt Lett ; 41(14): 3217-20, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27420499

RESUMEN

Efficient glass-clad crystal fiber (CF) lasers were demonstrated using a Ti:sapphire crystalline core as the gain medium. With a core diameter of 18 µm, the laser diode (LD) pump source can be effectively coupled and guided throughout the crystal fiber for a low threshold and high slope efficiency laser operation. The advantage of high heat dissipation efficiency of the fiber structure can be derived from the low core temperature rising measurement (i.e., 17 K/W) with passive cooling. At an output transmittance of 23%, the lowest absorbed threshold of 118.2 mW and highest slope efficiency of 29.6% were achieved, with linear laser polarization.

3.
Opt Lett ; 40(23): 5594-7, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26625059

RESUMEN

High-brightness near-infrared broadband amplified spontaneous emission (ASE) was generated by glass-clad Ti:sapphire crystal fibers, which were developed using the co-drawing laser-heated pedestal growth method. As much as 29.2 mW of ASE power was generated using 520 nm laser diodes as the excitation source on an a-cut, 18 µm core-diameter Ti:sapphire crystal fiber (CF). The 3 dB bandwidth was 163.8 nm, and the radiance was 53.94 W·mm(-2) sr(-1). The propagation loss of the glass-clad sapphire CF measured using the cutback method was 0.017 cm(-1) at 780 nm. For single-mode applications, more than 100 µW of power was coupled into a SM600 single-mode fiber.

4.
Opt Lett ; 36(6): 784-6, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21403682

RESUMEN

A significant advancement of cw lasing in Cr4+:Y3Al5O12 (Cr4+:YAG) double-clad crystal fiber grown by the codrawing laser-heated pedestal growth technique was demonstrated at RT. The optical-to-optical slope efficiency of 33.9% is the highest, to the best of our knowledge, among all Cr4+:YAG lasers, whether they are in bulk or fiber forms. The low-threshold lasing of 78.2 mW and high efficiency are in good agreement with the simulation. The keys to the high laser efficiency are twofold: one is the improved Cr4+ emission cross section and fluorescence lifetime due to release of the strain on the distorted Cr4+ tetrahedron, which also mitigates photobleaching in Cr4+:YAG; the other is the improved core uniformity at long fiber lengths. In addition, because of the low threshold, the impact of excited state absorption of the pump light is significantly reduced. The effects of crystal-orientation, self-selected, and pump-dependent linear polarization states were also addressed.

5.
Opt Lett ; 35(6): 811-3, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20237607

RESUMEN

A Ce(3+):YAG double-clad crystal fiber (DCF) visible emission was used as the light source for optical coherence tomography (OCT). The visible emission was produced from a 10 microm core DCF pumped by a diode laser. The broadband emission and short central wavelength of this light source enabled the realization of 1.5 microm axial resolution in air. The relatively clean spectrum reduced the side lobe of its point-spread function, and therefore facilitated the generation of a high-quality image with less crosstalk between adjacent image pixels. As a demonstration, an Aplocheilus lineatus goldfish was experimented on to map out the stroma of its cornea. This visible-light-based OCT can be utilized for industrial inspection as well as ocular applications.


Asunto(s)
Cerio , Córnea , Carpa Dorada/anatomía & histología , Láseres de Estado Sólido , Tomografía de Coherencia Óptica/instrumentación , Tomografía de Coherencia Óptica/métodos , Animales , Fenómenos Ópticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...