Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-21, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37978906

RESUMEN

Diabetes mellitus is a metabolic disorder that persists as a global threat to the world. A G-protein coupled receptor (GPCR), free fatty acid receptor 4 (FFAR4), has emerged as a potential target for type 2 diabetes mellitus (T2DM) and obesity-related disorders. The current study has investigated the FFAR4, deploying 3-dimensional structure modeling, molecular docking, machine learning, and high-throughput virtual screening methods to unravel the receptor's crucial and non-crucial binding site residues. We screened four lakh compounds and shortlisted them based on binding energy, stereochemical considerations, non-bonded interactions, and pharmacokinetic profiling. Out of the screened compounds, four compounds were selected for ligand-bound simulations. The molecular dynamic simulations were carried out for 1µs for native FFAR4 and 500 ns each for complexes of FFAR4 with compound 1, compound 2, compound 3, and compound 4. Our findings showed that in addition to reported binding site residues ARG99, ARG183, and VAL98 in known agonists like TUG-891, the amino acids ARG22, ARG24, THR23, TRP305, and GLU43 were also critical binding site residues. These amino acids impart stability to the FFAR4 complexes and contribute to the stronger binding affinity of the compounds. The study also indicated that aromatic residues like PHE211 are crucial for recognizing the active site's pi-pi and C-C double bonds. Since FFAR4 is a membrane protein, the simulation studies give an insight into the mechanisms of the crucial protein-lipid and lipid-water interactions. The analysis of the molecular dynamics trajectories showed all four compounds as potential hit molecules that can be developed further into potential agonists for T2DM therapy. Amongst the four compounds, compound 4 showed relatively better binding affinity, stronger non-bonded interactions, and a stable complex.Communicated by Ramaswamy H. Sarma.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37711100

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a 5-year relative survival rate of less than 10% making it one of the most fatal cancers. A lack of early measures of prognosis, challenges in molecular targeted therapy, ineffective adjuvant chemotherapy, and strong resistance to chemotherapy cumulatively make pancreatic cancer challenging to manage. OBJECTIVE: The present study aims to enhance understanding of the disease mechanism and its progression by identifying prognostic biomarkers, potential drug targets, and candidate drugs that can be used for therapy in pancreatic cancer. METHODS: Gene expression profiles from the GEO database were analyzed to identify reliable prognostic markers and potential drug targets. The disease's molecular mechanism and biological pathways were studied by investigating gene ontologies, KEGG pathways, and survival analysis to understand the strong prognostic power of key DEGs. FDA-approved anti-cancer drugs were screened through cell line databases, and docking studies were performed to identify drugs with high affinity for ARNTL2 and PIK3C2A. Molecular dynamic simulations of drug targets ARNTL2 and PIK3C2A in their native state and complex with nilotinib were carried out for 100 ns to validate their therapeutic potential in PDAC. RESULTS: Differentially expressed genes that are crucial regulators, including SUN1, PSMG3, PIK3C2A, SCRN1, and TRIAP1, were identified. Nilotinib as a candidate drug was screened using sensitivity analysis on CCLE and GDSC pancreatic cancer cell lines. Molecular dynamics simulations revealed the underlying mechanism of the binding of nilotinib with ARNTL2 and PIK3C2A and the dynamic perturbations. It validated nilotinib as a promising drug for pancreatic cancer. CONCLUSION: This study accounts for prognostic markers, drug targets, and repurposed anti-cancer drugs to highlight their usefulness for translational research on developing novel therapies. Our results revealed potential and prospective clinical applications in drug targets ARNTL2, EGFR, and PI3KC2A for pancreatic cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA