Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 19(11): 4286-4298, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36166409

RESUMEN

Poly(lactide-co-glycolide) (PLGA)-based microparticle formulations have been a mainstay of long-acting injectable drug delivery applications for decades. Despite a long history of use, tools and techniques to analyze and understand these formulations are still under development. Recently, a new characterization method was introduced known as the surface analysis after sequential semisolvent impact using sequential semisolvent vapors. The vapor-based technique is named, for convenience, surface analysis of (semisolvent) vapor impact (SAVI). In the SAVI method, discretely controlled quantities of selected organic semisolvents in the vapor phase were applied to PLGA microparticles to track particle morphological changes by laser scanning confocal microscopy. Subsequently, the morphological images were analyzed to calculate mean peak height (Sa), core height (Sk), kurtosis (Sku), dale void volume (Vvv), the density of peaks (Spd), maximum height (Hm), and the shape ratio (Rs). Here, the SAVI method was applied to naltrexone-loaded microparticles manufactured internally and Vivitrol, a commercial formulation. SAVI analysis of these microparticles indicated that the two primary mechanisms controlling the naltrexone release were the formation of discrete, self-crystallized portions of naltrexone within the PLGA structure and the degradation of PLGA chains through nucleophilic substitution. The relatively higher amounts of naltrexone crystals resulted in prolonged release than lower amounts of crystals. Data from gel permeation chromatography, differential scanning calorimetry, and in vitro release measurements all point to the importance of naltrexone crystal formation. This study highlights the utility of SAVI for gaining further insights into the microstructure of PLGA formulations and using SAVI data to support research, product development, and quality control applications for microparticle formulations of pharmaceuticals.


Asunto(s)
Naltrexona , Poliglactina 910 , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Rastreo Diferencial de Calorimetría , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Microesferas
2.
J Control Release ; 329: 1150-1161, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33148404

RESUMEN

Injectable long-acting formulations, specifically poly(lactide-co-glycolide) (PLGA) based systems, have been used to deliver drugs systemically for up to 6 months. Despite the benefits of using this type of long-acting formulations, the development of clinical products and the generic versions of existing formulations has been slow. Only about two dozen formulations have been approved by the U.S. Food and Drug Administration during the last 30 years. Furthermore, less than a dozen small molecules have been incorporated and approved for clinical use in PLGA-based formulations. The limited number of clinically used products is mainly due to the incomplete understanding of PLGA polymers and the various variables involved in the composition and manufacturing process. Numerous process parameters affect the formulation properties, and their intricate interactions have been difficult to decipher. Thus, it is necessary to identify all the factors affecting the final formulation properties and determine the main contributors to enable control of each factor independently. The composition of the formulation and the manufacturing processes determine the essential property of each formulation, i.e., in vivo drug release kinetics leading to their respective pharmacokinetic profiles. Since the pharmacokinetic profiles can be correlated with in vitro release kinetics, proper in vitro characterization is critical for both batch-to-batch quality control and scale-up production. In addition to in vitro release kinetics, other in vitro characterization is essential for ensuring that the desired formulation is produced, resulting in an expected pharmacokinetic profile. This article reviews the effects of a selected number of parameters in the formulation composition, manufacturing process, and characterization of microparticle systems. In particular, the emphasis is focused on the characterization of surface morphology of PLGA microparticles, as it is a manifestation of the formulation composition and the manufacturing process. Also, the implication of the surface morphology on the drug release kinetics is examined. The information described here can also be applied to in situ forming implants and solid implants.


Asunto(s)
Preparaciones Farmacéuticas , Poliglactina 910 , Liberación de Fármacos , Tamaño de la Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
3.
Mol Pharm ; 18(1): 18-32, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33331774

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) has been used for long-acting injectable drug delivery systems for more than 30 years. The factors affecting the properties of PLGA formulations are still not clearly understood. The drug release kinetics of PLGA microparticles are influenced by many parameters associated with the formulation composition, manufacturing process, and post-treatments. Since the drug release kinetics have not been explainable using the measurable properties, formulating PLGA microparticles with desired drug release kinetics has been extremely difficult. Of the various properties, the glass transition temperature, Tg, of PLGA formulations is able to explain various aspects of drug release kinetics. This allows examination of parameters that affect the Tg of PLGA formulations, and thus, affecting the drug release kinetics. The impacts of the terminal sterilization on the Tg and drug release kinetics were also examined. The analysis of drug release kinetics in relation to the Tg of PLGA formulations provides a basis for further understanding of the factors controlling drug release.


Asunto(s)
Vidrio/química , Microplásticos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Cinética , Tamaño de la Partícula , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA