Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611888

RESUMEN

In this study, sodium alginate/chitosan/halloysite nanotube composites were prepared by three-dimensional printing and characterized in terms of morphology, viscosity, thermal properties, and methylene blue (MB) adsorption performance. The high specific surface area and extensively microporous structure of these composites allowed for effective MB removal from wastewater; specifically, a removal efficiency of 80% was obtained after a 60 min treatment at an adsorbent loading of 1 g L-1 and an MB concentration of 80 mg L-1, while the maximum MB adsorption capacity equaled 376.3 mg g-1. Adsorption kinetics and isotherms were well described by quasi-second-order and Langmuir models, respectively. The composites largely retained their adsorption performance after five adsorption-desorption cycles and were concluded to hold great promise for MB removal from wastewater.

2.
Nanomaterials (Basel) ; 12(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36432237

RESUMEN

Many experimental studies have proved that ion dynamics in a single-digit nanopore with dimensions comparable to the Debye length deviate from the bulk values, but we still have critical knowledge gaps in our understanding of ion transport in nanoconfinement. For many energy devices and sensor designs of nanoporous materials, ion mobility is a key parameter for the performance of nanofluidic equipment. However, investigating ion mobility remains an experimental challenge. This study experimentally investigated the monovalent ion dynamics of single-digit nanopores from the perspective of ionic conductance. In this article, we present a theory that is sufficient for a basic understanding of ion transport through a single-digit nanopore, and we subdivided and separately analyzed the contribution of each conductance component. These conclusions will be useful not only in understanding the behavior of ion migration but also in the design of high-performance nanofluidic devices.

3.
Foods ; 11(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37431032

RESUMEN

In this study, a bilayer antibacterial chromogenic material was prepared using chitosan (CS) and hydroxyethyl cellulose (HEC) as inner substrate, mulberry anthocyanins (MA) as a natural tracer, and titanium dioxide nanoparticles (nano-TiO2)/CS:HEC as a bacteriostatic agent for the outer layer. By investigating their apparent viscosity and suitability for 3D printing links, the optimal ratio of the substrates was determined to be CS:HEC = 3:3. Viscosity of the CH was moderate. The printing process was consistent and exhibited no breakage or clogging. The printed image was highly stable and not susceptible to collapse and diffusion. Scanning electron microscopy and infrared spectroscopy indicated that intermolecular binding between the substances exhibited good compatibility. Titanium dioxide nanoparticles (nano-TiO2) were evenly distributed in the CH and no agglomeration was observed. The inner film fill rates affected the overall performance of the chromogenic material, with strong inhibitory effects against Escherichia coli and Staphylococcus aureus at different temperatures, as well as strong color stability. The experimental results indicated that the double-layer antibacterial chromogenic material can, to a certain extent, extend the shelf life of litchi fruit and determine the extent of its freshness. Therefore, from this study, we can infer that the research and development of active materials have a certain reference value.

4.
RSC Adv ; 11(23): 13806-13813, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35423930

RESUMEN

The ion transport behavior through sub-nm nanopores (length (L) ≈ radius (R)) on a film is different from that in nanochannels (L ≫ R), and even more different from the bulk behavior. The many intriguing phenomena in ionic transport are the key to the design and fabrication of solid-state nanofluidic devices. However, ion transport through sub-nm nanopores is not yet clearly understood. We investigate the ionic transport behavior of sub-nm nanopores from the perspective of conductance via molecular dynamics (MD) and experimental methods. Under the action of surface charge, the average ion concentration inside the nanopore is much higher than the bulk value. It is found that 100 mM is the transition point between the surface-charge-governed and the bulk behavior regimes, which is different from the transition point for nanochannels (10 mM). Moreover, by investigating the access, pores, surface charge, electroosmosis and potential leakage conductance, it is found that the conductive properties of the nanopore at low bulk concentration are determined by the surface charge potential leaks into the reservoir. Specifically, there is a huge increase in cation mobility through a cylindrical nanopore, which implies potential applications for the fast charging of supercapacitors and batteries. Sub-nm nanopores also show a strong selectivity toward Na+, and a strong repellence toward Cl-. These conclusions presented here will be useful not only in understanding the behavior of ion transport, but also in the design of nanofluidic devices.

5.
Micromachines (Basel) ; 9(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513580

RESUMEN

As an advanced manufacturing technology that has been developed in recent years, three-dimensional (3D) printing of macromolecular materials can create complex-shaped components that cannot be realized by traditional processing. However, only a few types of macromolecular materials are suitable for 3D printing: the structure must have a single function, and manufacturing macromolecular functional devices is difficult. In this study, using poly lactic acid (PLA) as a matrix, conductive composites were prepared by adding various contents of multi-walled carbon nanotubes (MWCNTs). The printability and properties of MWCNT/PLA composites with different MWCNT proportions were studied by using the fused deposition modeling (FDM) processing technology of 3D printing. The experimental results showed that high conductivity can be realized in 3D-printed products with a composite material containing 5% MWCNTs; its conductivity was 0.4 ± 0.2 S/cm, its tensile strength was 78.4 ± 12.4 MPa, and its elongation at break was 94.4% ± 14.3%. It had a good melt flow rate and thermal properties, and it enabled smooth printing, thus meeting all the requirements for the 3D printing of consumables.

6.
J Labelled Comp Radiopharm ; 61(4): 362-369, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29247459

RESUMEN

For the purpose of providing new insights for high-efficiency radiochemotherapy of hepatoma, a radioimmunotherapy and chemotherapy combinatorial therapy albumin nanospheres 131 I-antiAFPMcAb-DOX-BSA-NPs was designed and prepared. It was obtained in a high radiolabeling yield approximately 65% with the radiochemical purity of over 98%. The transmission electron microscope showed that the nanospheres obtained in good monodispersion with a diameter of approximately 230 nm. The doxorubicin (DOX) loading capacity of the DOX-BSA-NPs nanoparticles was determined to be approximately 180 µg/mg and 95.79 ± 3.89%. DOX was released gradually in 6 days. In vivo tumor-growth inhibition experiments showed that after treating with 131 I-antiAFPMcAb-DOX-BSA-NPs for 14 days, the tumor volume decreased more obvious than that of other 2 time points and the control groups. All the results indicated that the radiolabeled immune albumin nanospheres 131 I-antiAFPMcAb-DOX-BSA-NPs could significantly inhibit the hepatoma tumor growth with the strategy of combinatorial radioimmunotherapy and chemotherapy.


Asunto(s)
Albúminas/química , Quimioradioterapia/métodos , Doxorrubicina/uso terapéutico , Radioisótopos de Yodo/uso terapéutico , Nanosferas/química , Neoplasias Experimentales/terapia , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Doxorrubicina/administración & dosificación , Femenino , Células Hep G2 , Humanos , Radioisótopos de Yodo/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Radiofármacos/química , Radiofármacos/uso terapéutico , alfa-Fetoproteínas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA