Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 451: 139493, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38703728

RESUMEN

Iron chelating peptides have been widely utilized as iron supplements due to their excellent absorption capacity, However, the high cost and cumbersome manufacturing process of these peptides significantly limit their industrial application. In this study, fermentation was used for the first time to prepare iron chelating peptides. Bacillus altitudinis 3*1-3 was selected as the most suitable strain from 50 strains. The hydrolysates of fermented scallop skirts showed excellent iron-chelating capacity (9.39 mg/g). Aspartic acid, glutamic acid, and histidine are crucial for the binding of peptides to ferrous ions. The heptapeptide (FEDPEFE) forms six binding bonds with ferrous irons. Compared with ferrous sulfate, peptide-ferrous chelate showed more stability in salt solution and simulated gastrointestinal juice (p < 0.05). Furthermore, the fermentation method could save >50% of the cost compared with the enzymatic method. The results can provide a theoretical basis for the preparation of ferrous-chelated peptides using the fermentation method.

2.
Food Chem ; 450: 139472, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38705103

RESUMEN

In this study, the electrospinning technique was used to co-encapsulate Quercetin (Qu) and Lactiplantibacillus plantarum 1-24-LJ in PVA-based nanofibers, and the effect of bioactive films on fish preservation was evaluated at the first time. The findings indicated that both Lpb. plantarum 1-24-LJ and Qu were successfully in the fibers, and co-loaded fibers considerably outperformed single-loaded fiber in terms of bacterial survival and antioxidant activity. Following fish preservation using the loaded fibers, significant reductions were observed in TVB-N, TBARS, and microbial complexity compared to the control group. Additionally, the co-loaded fibers more effectively reduced the counts of H2S-producing bacteria and Pseudomonas. In the future, fibers with both active substances and LAB hold promise as a novel approach for fish preservation.

3.
Foods ; 13(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38672935

RESUMEN

Strong-flavor Daqu, as a fermentation agent, plays a significant role in shaping the quality of strong-flavor baijius, and fungal species in Daqu are important factors affecting the quality of Daqu. Therefore, we selected strong-flavor Daqu from seven different origins to study the fungal composition and the effects of the fungal composition on the physicochemical properties and volatile organic compounds (VOCs). It was found that the fungal composition influences the physicochemical properties of Daqu. Specifically, there was a positive link between Rhizomucor, Rhizopus, Thermomyces, and liquefying activity and a positive correlation between Aspergillus and fermenting activity. Furthermore, the relationships between esterifying activity and Thermomyces, Rhizomucor, Aspergillus, Pichia, and Saccharomycopsis were found to be positive. The VOCs in Daqu were affected by Aspergillus, Issatchenkia, Pichia, and Thermoascus. Issatchenkia was significantly positively correlated with benzeneethanol as well as Aspergillus and pentadecanoic acid ethyl ester, ethyl myristate. Pichia and Thermoascus were significantly negatively correlated with benzaldehyde and 2-furaldehyde. This study deepens our understanding of the relationship between VOCs, the physicochemical properties with microbial communities, and reference significance for the production of better-quality strong-flavor Daqu.

4.
Foods ; 13(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540914

RESUMEN

This research endeavored to elucidate the antioxidant attributes of lactic acid bacteria, specifically their impact on anti-aging and lifespan augmentation in Caenorhabditis elegans. The study focused on Lactiplantibacillus plantarum A72, identified through ARTP mutagenesis for its potent antioxidant properties. In vitro analysis affirmed its free radical neutralizing capacity. In C. elegans, the strain not only extended the lifespan by 25.13% and amplified motility 2.52-fold, but also maintained reproductive capabilities. Remarkably, Lpb. plantarum A72 diminished reactive oxygen species (ROS) and malondialdehyde (MDA) levels in C. elegans by 34.86% and 69.52%, respectively, while concurrently enhancing its antioxidant enzyme activities. The strain also bolstered C. elegans survival rates by 46.33% and 57.78% under high temperature and H2O2 conditions, respectively. Transcriptomic scrutiny revealed that Lpb. plantarum A72 could retard C. elegans aging and extend lifespan by upregulating the sod-5 and hsp-16.1 genes and downregulating the fat-6 and lips-17 genes. These findings propose Lpb. plantarum A72 as a potential antioxidant and anti-aging lactic acid bacteria.

5.
Food Chem X ; 21: 101174, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38362527

RESUMEN

Unsaturated aliphatic aldehyde oxidation plays a significant role in the deep oxidation of fatty acids to produce volatile chemicals. Exposing the oxidation process of unsaturated aliphatic aldehydes is crucial to completely comprehend how food flavor forms. In this study, thermal desorption cryo-trapping in conjunction with gas chromatography-mass spectrometry was used to examine the volatile profile of (E)-4-decenal during heating, and 32 volatile compounds in all were detected and identified. Meanwhile, density functional theory (DFT) calculations were used, and 43 reactions were obtained in the 24 pathways, which were summarized into the peroxide reaction mechanism (ROOH), the peroxyl radical reaction mechanism (ROO·) and the alkoxy radical reaction mechanism (RO·). Moreover, the priority of these three oxidative mechanisms was the RO· mechanism > ROOH mechanism > ROO· mechanism. Furthermore, the DFT results and experimental results agreed well, and the oxidative mechanism of (E)-4-decenal was finally illuminated.

6.
Food Microbiol ; 119: 104447, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38225049

RESUMEN

Yarrowia lipolytica N12 and A13 with high lipase activity obtained by mutagenesis were inoculated into sour meat, and their effects on physicochemical properties, microbial community succession, free amino acids, and volatile compounds of sour meat were investigated. Inoculation fermentation increased the contents of free amino acids observably, rapidly reduced pH, promoted the accumulation of total acids, decreased 2-thiobarbituric acid reactive substances (TBARS) values. In addition, the addition of Y. lipolytica might contribute to the growth of lactic acid bacteria, Candida spp., and Debaryomyces udenii, which play an important role in production of volatile compounds. It was shown that inoculation promoted the production of esters, aldehydes, and alcohols, especially ethyl esters, giving sour meat a better meat flavor. Besides, it was found that Y. lipolytica A13 had better fermenting property. Sample of A13 group had higher contents of ethyl esters, free amino acids and dominant microorganisms. The results may help to provide new strains for sour meat fermentation.


Asunto(s)
Lactobacillales , Saccharomycetales , Yarrowia , Yarrowia/genética , Ésteres/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Fermentación , Aminoácidos/metabolismo , Carne
7.
Bioresour Technol ; 393: 130101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38013036

RESUMEN

Ergothioneine (EGT) is a high-value natural antioxidant that cannot be synthesized by the human body. This study showed that Rhodotorula mucilaginosa DL-X01 can use untreated molasses and fish bone meal enzymatic hydrolysate as the substrates to synthesize EGT. By optimizing the growth conditions, the EGT yield reached 29.39 mg/L when molasses and fish bone meal (FBM) were added at 60 g/L and 400 g/L respectively. Finally, the EGT yield was increased to 216.25 mg/L by fed-batch fermentation in a 5 L bioreactor. Compared with the fermentation by yeast extract peptone dextrose medium, the feedstock cost of EGT production was reduced by 330.91 % by using molasses and FBM as substrates. These results showed that R. mucilaginosa DL-X01 can produce high-value EGT using two cheap processing by-products, molasses and FBM, which is of great significance for environmental protection and sustainable development.


Asunto(s)
Ergotioneína , Minerales , Rhodotorula , Animales , Humanos , Melaza , Análisis Costo-Beneficio , Fermentación , Productos Biológicos
8.
Food Chem X ; 19: 100737, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780285

RESUMEN

Oleic acid oxidation is one of the main sources of food flavor compounds. Volatile profiling was investigated using thermal desorption cryo-trapping combined with gas chromatography-mass spectrometry to analyze the volatile composition of oleic acid oxidation. A total of 43 volatile compounds, including aldehydes (11), ketones (2), alcohols (5), furans (2), acids (8), ester (12) and alkane (3) were identified from oleic acid during heating. Then, density functional theory (DFT) was applied to analyze the oxidative mechanism of oleic acid during heating. A total of 30 reactions were obtained and grouped into the peroxide (ROOH), alkoxy radical (RO•), and peroxide radical (ROO•) pathways. The structures of intermediates, transition states (TS), and products in each reaction were also determined. Results show that the branch chemical reactions were the key reactions in different reaction pathway. Moreover, the reaction priority of the thermal oxidation reaction of oleic acid was the peroxide radical mechanism > the peroxide mechanism > the alkoxy radical mechanism.

9.
Foods ; 12(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835218

RESUMEN

Cider flavor has a very important impact on the quality. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) combined with gas chromatography-ion mobility spectrometry (GC-IMS) tested different kinds of non-Saccharomyces yeasts and Saccharomyces cerevisiae (S. cerevisiae) co-inoculated for the fermentation of cider to determine differences in aroma material, and the determination of odor activity value (OAV) is applied less frequently in research. Through Rhodotorula mucilaginosa, Debaryomyces hansenii, Zygosaccharomyces bailii, and Kluyveromyces Marxianus, four different strains of non-Saccharomyces yeast fermented cider, and it was found that, in both the chemical composition and flavor of material things, compared with monoculture-fermented cider using S. cerevisiae, all differences were significant. Co-inoculated fermentation significantly improved the flavor and taste of cider. As in the volatile compounds of OVA > 1, octanoic acid (Sc 633.88 µg/L, co-inoculation fermented group 955.49 µg/L) provides vegetable cheese fragrance and decanoic acid, ethyl ester (Sc 683.19 µg/L, co-inoculation fermented group 694.98 µg/L) a creamy fruity fragrance, etc., and the average content increased after co-inoculated fermentation. Phenylethyl alcohol, which can produce a rose scent, was relatively abundant in cider samples and varied greatly among the groups. Moreover, the contents of ethyl lactate and 1-butanol in the Sc+Rm (ciders fermented by S. cerevisiae and R. mucilaginosa) were the highest of all of the cider samples. Different types of non-Saccharomyces yeast produced cider with different flavor characteristics. This study demonstrates that different species of non-Saccharomyces yeast do have an important impact on the characteristics of cider and that co-inoculation with non-Saccharomyces yeast and S. cerevisiae for cider fermentation may be a strategy to improve the flavor of cider.

10.
Foods ; 12(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37835277

RESUMEN

Morganella morganii, a spoilage bacterium in fermented foods, produces harmful biogenic amines (BAs). Although Lactiplantibacillus plantarum is widely used to inhibit spoilage bacteria, the inhibition pattern and inhibition mechanism of M. morganii by Lpb. plantarum are not well studied. In this study, we analysed the effects of the addition of Lpb. plantarum cell-free supernatant (CFS) on the growth and BA accumulation of M. morganii and revealed the mechanisms of changes in different BAs by using RNA sequencing transcriptome analysis. The results showed that Lpb. plantarum CFS could significantly inhibit M. morganii BAs in a weak acid environment (pH 6), and the main changes were related to metabolism. Carbohydrate and energy metabolism were significantly down-regulated, indicating that Lpb. plantarum CFS inhibited the growth activity and decreased the BA content of M. morganii. In addition, the change in histamine content is also related to the metabolism of its precursor amino acids, the change in putrescine content may also be related to the decrease in precursor amino acid synthesis and amino acid transporter, and the decrease in cadaverine content may also be related to the decrease in the cadaverine transporter. The results of this study help to inhibit the accumulation of harmful metabolites in fermented foods.

11.
Food Chem ; 428: 136725, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37399695

RESUMEN

Unsaturated fatty aldehydes are the main products of fatty acid oxidation, and could be further oxidized to form volatile compounds with shorter carbon chains. Therefore, studying the oxidation of unsaturated fatty aldehydes is an important way to reveal the mechanism of food flavor formation during heating. In this study, volatile profiling of (E)-2-decenal during heating was firstly investigated by using thermal-desorption cryo-trapping combined with gas chromatography-mass spectrometry (GC-MS). A total of 38 volatile compounds were detected. Then, twenty-one reactions in the heating process of (E)-2-decenal were obtained by using density functional theory (DFT) calculations, and grouped into three oxidation pathways, namely, peroxide pathway, peroxyl radical pathway and alkoxy radical pathway. Meanwhile, the priority of these three pathways was the alkoxy radical reaction pathway > peroxide pathway > peroxyl radical reaction pathway. Moreover, the calculated results agreed well with the experimental results.


Asunto(s)
Ácidos Grasos , Compuestos Orgánicos Volátiles , Teoría Funcional de la Densidad , Ácidos Grasos/análisis , Peróxidos , Aldehídos/análisis , Estrés Oxidativo , Compuestos Orgánicos Volátiles/análisis
12.
Food Funct ; 14(14): 6363-6375, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37325941

RESUMEN

A carotenoid production strain Rhodosporidium toruloides NP11 and its mutant strain R. toruloides A1-15 were studied under chemostat nitrogen-limited cultivation. Multi-omics analysis (metabolomics, lipidomics and transcriptomics) was used to investigate the different mechanisms of torularhodin accumulation between NP11 and A1-15. The results showed that the carotenoid synthesis pathway was significantly enhanced in A1-15 compared to NP11 under nitrogen limitation, due to the significant increase of torularhodin. Under nitrogen-limited conditions, higher levels of ß-oxidation were present in A1-15 compared to those in NP11, which provided sufficient precursors for carotenoid synthesis. In addition, ROS stress accelerated the intracellular transport of iron ions, promoted the expression of CRTI and CRTY genes, and reduced the transcript levels of FNTB1 and FNTB2 in the bypass pathway, and these factors may be responsible for the regulation of high torularhodin production in A1-15. This study provided insights into the selective production of torularhodin.


Asunto(s)
Basidiomycota , Multiómica , Carotenoides/metabolismo , Nitrógeno/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo
13.
Food Res Int ; 167: 112715, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087274

RESUMEN

This study reports for the first time the co-encapsulation of probiotics and phycocyanin by electrospinning. SEM showed that the electrospun fibers exhibited a homogeneous, smooth surface and a circular shape. XRD and ATR-FTIR results showed that Lactiplantibacillus plantarum 1-24-LJ and Pc were co-embedded in the fibers and that the presence of L. plantarum 1-24-LJ promoted the encapsulation of phycocyanin. TG analysis showed that the addition of phycocyanin and L. plantarum 1-24-LJ improved the composite fiber's thermal stability. The fibers co-embedded with phycocyanin and L. plantarum 1-24-LJ had the highest DPPH and ABTS+ activity, indicating that the two may have synergistic antioxidant effects. After 28 days, the viability of the strain could still be above 6 log cfu/g, and the addition of phycocyanin could help to improve the strain's survivability. In this experiment, a co-embedding method for probiotics and antioxidants was proposed, which could effectively increase the survivability of probiotics and improve the antioxidant properties of the fibers.


Asunto(s)
Lactobacillus plantarum , Nanofibras , Probióticos , Antioxidantes , Ficocianina , Nanofibras/química , Lactobacillus plantarum/química , Probióticos/química
14.
Crit Rev Food Sci Nutr ; : 1-12, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36891762

RESUMEN

Ergothioneine (EGT) is a high-value natural sulfur-containing amino acid and has been shown to possess extremely potent antioxidant and cytoprotective activities. At present, EGT has been widely used in food, functional food, cosmetics, medicine, and other industries, but its low yield is still an urgent problem to overcome. This review briefly introduced the biological activities and functions of EGT, and expounded its specific applications in food, functional food, cosmetic, and medical industries, introduced and compared the main production methods of EGT and respective biosynthetic pathways in different microorganisms. Furthermore, the use of genetic and metabolic engineering methods to improve EGT production was discussed. In addition, the incorporation of some food-derived EGT-producing strains into fermentation process will allow the EGT to act as a new functional factor in the fermented foods.

15.
J Sci Food Agric ; 103(5): 2304-2312, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36636889

RESUMEN

BACKGROUND: Studies have shown that either the addition of starter culture or enzyme can improve fermentation in fish or other products. However, little research has been carried out on the effects of coupling starter cultures with lipase on the microbial community and product quality. Suanzhayu is a Chinese fermented fish product that mainly relies on spontaneous fermentation, resulting in an unstable flavor and quality. The present study investigated the impact of lipase and Lactiplantibacillus plantarum 1-24-LJ on the quality of Suanzhayu. RESULTS: Inoculation decreased pH and 2-thiobarbituric acid reactive substances (TBARS) values, and also helped the dominance of the strain in the ecosystem, whereas lipase addition raised TBARS values and had little effect on pH, water activity (aw ) and microbiota. The addition of lipase and/or Lpb. plantarum increased the content of alcohols, aldehydes, ketones, esters and umami amino acids. The co-additions with the most significant effect and the total contents of volatile compounds (VCs) and free amino acids (FAAs) were 1801.92 g per 100 g and 21 357.05 mg per 100 g, respectively. Former-Lactobacillus was negatively correlated with pH, aw and Prevotella, but positively with VCs (ethyl ester of heptanoic acid, ethyl ester of octanoic acid) and FAAs (Tyr, Phe). Furthermore, adding Lpb. plantarum 1-24-LJ alone or in combination with lipase shortened the fermentation process. CONCLUSION: The present study provides a recommended Suanzhayu process approach for improving product quality and flavor, as well as shortening fermentation time, by adding Lpb. plantarum 1-24-LJ with or without lipase. © 2023 Society of Chemical Industry.


Asunto(s)
Lactobacillus plantarum , Animales , Lactobacillus plantarum/metabolismo , Lipasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ecosistema , Microbiología de Alimentos , Fermentación , Aminoácidos/metabolismo
16.
Food Chem ; 402: 134213, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36126578

RESUMEN

Saccharomyces cerevisiae is commonly used as a starter culture for alcoholic beverages but is less applied in meat products. In this study, the effects of S. cerevisiae LXPSC1 on sour meat during fermentation were investigated. It was found that samples inoculated with S. cerevisiae LXPSC1 (Sc group) had better sensory characteristics and higher levels of pH, ethanol, free amino acids (FAAs), volatile organic compounds (VOCs). The bacterial communities of both groups were dominated by Lactobacillus sakei, Weissella hellenica, and Lactobacillus plantarum, which might play a role in reducing pH and aw and increasing the content of lactic acid, FAAs, and esters. However, Candida zeylanoides and S. cerevisiae were the dominant fungi in the control group and Sc group, respectively. Moreover, S. cerevisiae was positively related to esters, alcohols, ethanol and total VOCs. Overall, S. cerevisiae LXPSC1 might be regarded as a desirable starter culture for improving product quality.


Asunto(s)
Productos de la Carne , Compuestos Orgánicos Volátiles , Fermentación , Saccharomyces cerevisiae/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Productos de la Carne/análisis , Etanol/metabolismo , Ácido Láctico/metabolismo , Aminoácidos/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5264-5273, 2022 Oct.
Artículo en Chino | MEDLINE | ID: mdl-36472033

RESUMEN

Based on the network target approach and technology, this study proposed for the first time a novel optimization method for Chinese medicine formulae. Moreover, with Qingluo Decoction as an example, a method for the research and development of Chinese medicine, which combines scientific methodology and experience of famous doctors, was developed. Specifically, based on the composition of Qingluo Decoction, this study used the using network target for intelligent and quantitative analysis on drug actions(UNIQ) to predict the medicinals that targeted the key pathways of rheumatoid arthritis(RA) such as angiogenesis. Then, combining the experience of the first national Chinese medical master LI Ji-ren and Aihui famous Chinese medicine doctor LI Yan and Chinese medicine theory, this study developed a novel angiogenesis-targeted prescription modified Qingluo Decoction(MQLD). Afterward, the clinical efficacy and mechanism of MQLD were verified. The results showed that 27 medicinals with significant regulatory effect on angiogenesis-related key signaling pathways were identified by UNIQ, among which 6 were selected by the Chinese medicine physicians to develop the MQLD. Clinical trials demonstrated that the clinical efficacy of MQLD, in terms of either American College of Rheumatology 20% improvement and 50% improvement criteria(ACR20, ACR50) or TCM syndrome evaluation, was better than that of Qingluo Decoction. Experimental study revealed that MQLD can inhibit RA angiogenesis by acting on the vascular endothelial growth factor(VEGF) pathway, nuclear factor κB(NF-κB) pathway, inflammatory cytokine release, and immune cell regulation. Taken together, this study developed a new formula MQLD with improved clinical efficacy, precise applicable clinical settings, and authorized patent through the network target technology, thus providing a new way for the precise development of Chinese medicine and preservation of the experience of famous physicians.


Asunto(s)
Medicamentos Herbarios Chinos , Médicos , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Prescripciones
18.
Foods ; 11(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359923

RESUMEN

The lactic acid bacteria (LABs) used for fermentation have an extremely vital impact on the quality of Suancai, a fermented vegetable. The bacterial diversity and metabolites of inoculated Suancai with LABs, including Lactiplantibacillus plantarum (Lb. plantarum), Levilactabacillus brevis (Lb. brevis), and Leuconostoc mesenteroides (Leu. mesenteroides), were investigated. The inoculation of LABs significantly decreased the pH and the content of nitrite. The Suancai inoculated with LABs had a higher content of the total titratable acidity (TTA) and organic acids than spontaneous fermentation. The LABs inoculation significantly influenced the bacterial community structures, which directly or indirectly caused changes of metabolites. The bacterial community profiles of Suancai inoculated with Lb. plantarum were more similar to spontaneous fermentation. The inoculation of Lb. plantarum, Lb. brevis, and Leu. mesenteroides could increase its abundance in Suancai. Whatever the species inoculated, Lb. plantarum was always the predominant bacterium in Suancai after fermentation. The inoculated LABs were positively correlated with most volatile compounds and amino acids. The inoculated LABs significantly improved the volatile compounds and amino acid content of Suancai. This study could contribute to understanding the function of starters in Suancai fermentation and promote the selection of applicable starters for high-quality Suancai production.

19.
Food Res Int ; 161: 111918, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192920

RESUMEN

Biogenic amines (BA) are often present at high concentrations in fermented meat and cause foodborne illness. The aim of this work was to screen amine-degrading starters for Roucha (a fermented meat) to improve product safety and quality. Firstly, Weissella viridescens F2 and Lactiplantibacillus plantarum His6 with multi-copper oxidase activity and high degradation rates towards histamine and tyramine were selected as single or mixed starters. Additionally, the effect of starters on bacterial community succession, acid production, BA accumulation, free amino acid profiles, and volatile compound profiles were evaluated during the fermentation of Roucha. Results indicated that all starters could effectively reduce the accumulation of BA in Roucha. At the end of fermentation, Lpb. plantarum His6 as a single starter reduced the histamine level (38.15 %), while mixed starters (Lpb. plantarum His6 + W. viridescens F2) possessed a high tyramine-reduction rate (54.95 %) and total BA-reduction rate (46.64 %). Bacterial succession analysis revealed that starters could help establish the dominance of lactobacilli or Weissella quickly, which contributed to the direct degradation of BA and inhibited the growth of amine-producing bacteria. Furthermore, Lpb. plantarum His6 could promote the accumulation of essential amino acids (leucine, phenylalanine, threonine, isoleucine), sweet and umami amino acids (glycine, threonine, glutamate), and volatile compounds of good odor, indicating that this strain greatly contributed to the development of good taste and aroma characteristics in Roucha. Overall, this work shows that the application of amine-degrading starters is an effective strategy to reduce the BA accumulation and improve the quality of Roucha. Thus, these findings can provide foundations for the industrial production of Roucha.


Asunto(s)
Lactobacillales , Aminoácidos/análisis , Bacterias/metabolismo , Aminas Biogénicas/análisis , Microbiología de Alimentos , Glutamatos , Glicina , Histamina/análisis , Isoleucina/metabolismo , Lactobacillales/metabolismo , Lactobacillus/metabolismo , Leucina/metabolismo , Fenilalanina/metabolismo , Treonina/metabolismo , Tiramina/análisis
20.
Foods ; 11(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35804748

RESUMEN

In this study, three Lactiplantibacillus plantarum, namely 3-14-LJ, M22, and MB1, with high acetate esterase activity, acid, salt, and high-temperature tolerance were selected from 708 strains isolated from fermented food. Then, L. plantarum strains MB1, M22, and 3-14-LJ were inoculated at 107 CFU/mL in the model and 107 CFU/g in actual Suanzhayu systems, and the effects during fermentation on the physicochemical properties, amino acid, and volatile substance were investigated. The results showed that the inoculated group had a faster pH decrease, lower protein content, higher TCA-soluble peptides, and total amino acid contents than the control group in both systems (p < 0.05). Inoculation was also found to increase the production of volatile compounds, particularly esters, improve the sour taste, and decrease the bitterness of the product (p < 0.05). L. plantarum M22 was more effective than the other two strains in stimulating the production of isoamyl acetate, ethyl hexanoate, and ethyl octanoate. However, differences were discovered between the strains as well as between the model and the actual systems. Overall, the isolated strains, particularly L. plantarum M22, have good fermentation characteristics and have the potential to become excellent Suanzhayu fermenters in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...