Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 263(Pt 2): 129836, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307435

RESUMEN

With the increasing awareness of environmental protection, the demand for eco-friendly bio-derived flame-retardant for textiles has received increasing attention. In this work, a fully bio-derived phosphorylated furan-based flame retardant (FAP) was synthesized by the Schiff reaction of furan-based compounds (furfural and furfurylamine). To evaluate the application scope and flame retardant efficiency of FAP, cotton fabrics and PLA nonwovens were selected as biomass-based representatives of natural fiber materials and synthetic fiber materials, respectively. Significantly, based on the composition of furan ring, phosphorus and nitrogen containing components of FAP, excellent charring and flame retardant properties of coated cotton fabrics and PLA nonwovens can be expected. TGA results showed that the residual char of C-FAP-3 and P-FAP-3 were 39.7% (increased by 267.6%) and 16.7% (increased by 215.1%), respectively, higher than those of control cotton (10.8%) and PLA nonwoven (5.3%). Cone test results exhibited that the peak heat release rate (PHRR) and total heat release (THR) values of C-FAP-3 were sharply decreased by 69.4% and 37.8%, respectively. P-FAP-3 also displayed a significant reduction in PHRR, implying high flame retardancy of C-FAP-3 and P-FAP-3. Notably, through the weight gains of FAP coating on cotton and PLA as well as the final LOI and VBT results of the flame retardant treated fabrics, it can be preliminarily inferred that control cotton fabrics are more likely to achieve better flame retardant effects than PLA. Additionally, the facile synthetic strategy of fully bio-derived flame retardants is expected to promote the development of green flame retardant strategies for high-performance textiles.


Asunto(s)
Retardadores de Llama , Biomasa , Furanos , Furaldehído , Gossypium , Poliésteres
2.
Molecules ; 28(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764404

RESUMEN

It is well known that bacterial infections and fire-hazards are potentially injurious in daily life. With the increased security awareness of life and properties as well as the improvement of living standards, there has been an increasing demand for multifunctional textiles with flame retardant and antibacterial properties, especially in the fields of home furnishing and medical protection. So far, various treatment methods, including the spray method, the dip-coating method, and the pad-dry-cure method, have been used to apply functional finishing agents onto fabrics to achieve the functionalization in the past exploration stage. Moreover, in addition to the traditional finishing technology, a number of novel technologies have emerged, such as layer-by-layer (LBL) deposition, the sol-gel process, and chemical grafting modification. In addition, some natural biomasses, including chitin, chitosan (CS), and several synthetic functional compounds that possess both flame-retardant and bacteriostatic properties, have also received extensive attention. Hence, this review focuses on introducing some commonly used finishing technologies and flame retardant/antibacterial agents. At the same time, the advantages and disadvantages of different methods and materials were summarized, which will contribute to future research and promote the development and progress of the industry.


Asunto(s)
Retardadores de Llama , Antibacterianos/farmacología , Biomasa , Quitina , Textiles
3.
Int J Biol Macromol ; 246: 125343, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331534

RESUMEN

Cellulosic aerogels (CNF) are considered naturally available thermal insulating materials as substitutes for conventional polymeric aerogels owing to their extensive sources, low density, low thermal conductivity, sustainability and biodegradability. However, cellulosic aerogels suffer from high flammability and hygroscopicity. In this work, a novel P/N-containing flame retardant (TPMPAT) was synthesized to modify cellulosic aerogels to improve their anti-flammability. TPMPAT/CNF aerogels were further modified by polydimethylsiloxane (PDMS) to enhance the water-proof characteristics. Although the addition of TPMPAT and/or PDMS slightly increased the density and thermal conductivity of the composite aerogels, those values were still comparable to the commercial polymeric aerogels. Compared with pure CNF aerogel, the cellulose aerogel modified by TPMPAT and/or PDMS had higher T-10%, T-50% and Tmax, which indicated that the modified cellulose aerogels have better thermal stability. TPMPAT modification made CNF aerogels highly hydrophilic, while TPMPAT/CNF aerogel modified by PDMS became a highly hydrophobic material with a water contact angle (WCA) of 142°. Pure CNF aerogel burned rapidly after ignition, showing a low limiting oxygen index (LOI) of 23.0% and no UL-94 grade. In contrast, both TPMPAT/CNF-30% and PDMS-TPMPAT/CNF-30% showed self-extinction behaviors with a UL-94 V-0 grade, implying high fire resistance. Combined with high anti-flammability and hydrophobicity, the ultra-light-weight cellulosic aerogels show great potential for thermal insulation applications.


Asunto(s)
Celulosa , Incendios , Dimetilpolisiloxanos , Polímeros , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA