Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Chem Inf Model ; 53(12): 3343-51, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24304102

RESUMEN

Mutations in drug targets can alter the therapeutic effects of drugs. Therefore, evaluating the effects of single-nucleotide polymorphisms (SNPs) on drug-target binding is of significant interest. This study focuses on the analysis of the structural and energy properties of SNPs in successful drug targets by using the data derived from HapMap and the Therapeutic Target Database. The results show the following: (i) Drug targets undergo strong purifying selection, and the majority (92.4%) of the SNPs are located far from the drug-binding sites (>12 Å). (ii) For SNPs near the drug-binding pocket (≤12 Å), nearly half of the drugs are weakly affected by the SNPs, and only a few drugs are significantly affected by the target mutations. These results have direct implications for population-based drug therapy and for chemical treatment of genetic diseases as well.


Asunto(s)
Simulación del Acoplamiento Molecular , Polimorfismo de Nucleótido Simple , Medicamentos bajo Prescripción/química , Proteínas/química , Bases de Datos Genéticas , Proyecto Mapa de Haplotipos , Humanos , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Mutación , Proteínas/agonistas , Proteínas/antagonistas & inhibidores , Proteínas/genética , Selección Genética , Termodinámica
2.
Biochem Biophys Res Commun ; 423(2): 319-24, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22659414

RESUMEN

Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.


Asunto(s)
Resistencia a Antineoplásicos/genética , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Proteínas Tirosina Quinasas Receptoras/genética , Sustitución de Aminoácidos , Quinasa de Linfoma Anaplásico , Dominio Catalítico/genética , Crizotinib , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Mutación , Conformación Proteica , Proteínas Tirosina Quinasas Receptoras/química , Tirosina/química , Tirosina/genética
3.
Bioorg Med Chem ; 17(8): 3011-7, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19342247

RESUMEN

Triazolopyrimidine-2-sulfonamide belongs to a herbicide group called acetohydroxyacid synthase inhibitors. With the aim to discover new triazolopyrimidine sulfonanilide compounds with high herbicidal activity and faster degradation rate in soil, the methyl group of Flumetsulam (FS) was modified into a methoxy group to produce a new herbicidal compound, N-2,6-difluorophenyl-5-methoxy-1,2,4-triazolo[1,5-a]pyrimidine-2-sulfonamide (experimental code: Y6610). The enzymatic kinetic results indicated that compound Y6610 and FS have k(i) values of 3.31x10(-6) M and 3.60x10(-7) M against Arabidopsis thaliana AHAS, respectively. The 10-fold lower enzyme-inhibiting activity of Y6610 was explained rationally by further computational simulations and binding free energy calculations. In addition, compound Y6610 was found to display the same level in vivo post-emergent herbicidal activity as FS against some broad-leaf weeds and good safety to rice, maize, and wheat at the dosages of 75-300 gai/ha. Further determination of the half-lives in soil revealed that the half-life in soil of Y6610 is 3.9 days shorter than that of FS. The experimental results herein showed that compound Y6610 could be regarded as a new potential acetohydroxyacid synthase-inhibiting herbicide candidate for further study.


Asunto(s)
Acetolactato Sintasa/antagonistas & inhibidores , Herbicidas/síntesis química , Pirimidinas/síntesis química , Sulfonamidas/síntesis química , Acetolactato Sintasa/metabolismo , Arabidopsis , Sitios de Unión , Simulación por Computador , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Herbicidas/química , Humanos , Cinética , Modelos Moleculares , Plantas Modificadas Genéticamente , Pirimidinas/química , Relación Estructura-Actividad , Sulfonamidas/química
4.
J Phys Chem B ; 113(14): 4865-75, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-19284797

RESUMEN

Protoporphyrinogen oxidase (PPO; EC 1.3.3.4) is the last common enzyme for the enzymatic transformation of protoporphyrinogen-IX to protoporphyrin-IX, which is the key common intermediate leading to heme and chlorophyll. Hence, PPO has been identified as one of the most importance action targets for the treatment of some important diseases including cancer and variegated porphyria (VP). In the agricultural field, PPO inhibitors have been used as herbicides for many years. Recently, a unique drug resistance was found to be associated with a nonactive site residue (Gly210) deletion rather than substitution in A. tuberculatus PPO. In the present study, extensive computational simulations, including homology modeling, molecular dynamics (MD) simulations, and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations, have been carried out to uncover the detailed molecular mechanism of drug resistance associated with Gly210 deletion. Although Gly210 in the wild-type A. tuberculatus PPO has no direct interaction with the inhibitors, all the computational models and energetic results indicated that Gly210 deletion has great effects on the hydrogen-bonding network and the conformational change of the binding pocket. An interchain hydrogen bond between Gly210 with Ser424, playing an important role in stabilizing the local conformation of the wild-type enzyme, disappeared after Gly210 deletion. As a result, the mutant-type PPO has a lower affinity than the wild-type enzyme, which accounts for the molecular mechanism of drug resistance. The structural and mechanistic insights obtained from the present study provide a new starting point for future rational design of novel PPO inhibitors to overcome drug resistance associated with Gly210 deletion.


Asunto(s)
Codón/genética , Simulación por Computador , Eliminación de Gen , Modelos Químicos , Protoporfirinógeno-Oxidasa/química , Protoporfirinógeno-Oxidasa/genética , Amaranthus/enzimología , Resistencia a Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Enlace de Hidrógeno , Ligandos , Estructura Molecular , Protoporfirinógeno-Oxidasa/antagonistas & inhibidores , Relación Estructura-Actividad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...