Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.707
Filtrar
1.
Diabetes Res Clin Pract ; : 111822, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154657

RESUMEN

AIMS: This study endeavors to explore the ramifications of early dynamic blood glucose (BG) trajectories within the initial 48 h of intensive care unit (ICU) admission on mortality among critically ill heart failure (HF) patients. METHODS: The study employed a retrospective observational design, analyzing dynamic BG data of HF patients from the Medical Information Mart for Intensive Care IV database. The BG trajectory subphenotypes were identified using the hierarchical clustering based on the dynamic time-warping algorithm. The primary outcome of the study was 28-day mortality, with secondary outcomes including 180-day and 1-year mortality. RESULTS: We screened a total of 21,098 HF patients and finally 15,092 patients were included in the study. Our results identified three distinct BG trajectory subphenotypes: increasing (n = 3503), stabilizing (n = 6250), and decreasing (n = 5339). The increasing subphenotype was associated with the highest mortality risk at 28 days, 180 days, and 1 year. The stabilizing and decreasing subphenotypes showed significantly lower mortality risks across all time points, with hazard ratios ranging from 0.85 to 0.88 (P<0.05 for all). Sensitivity analyses confirmed the robustness of these findings after adjusting for various covariates. CONCLUSIONS: Increasing BG trajectory within 48 h of admission is significantly associated with higher mortality in patients with HF. It is necessary to devote greater attention to the early BG dynamic changes in HF patients to optimize clinical BG management and enhance patient prognosis.

2.
J Med Genet ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153854

RESUMEN

BACKGROUND: Variants in the RPGR are the leading cause of X-linked retinopathies (XLRPs). Further in-depth investigation is needed to understand the natural history. METHODS: Review of all case records, molecular genetic testing results, best-corrected visual acuity (BCVA), retinal imaging data (including fundus autofluorescence imaging and optical coherence tomography (OCT)), static visual field (VF) assessments and full-field electroretinogram. RESULTS: Genetic testing was conducted on 104 male patients from 89 family pedigrees, identifying 22 novel variants and 1 de novo variant. The initial symptoms appeared in 78.2% of patients at a median age of 5 years. BCVA declined at a mean rate of 0.02 (IQR, 0-0.04) logarithm of the minimum angle of resolution per year, with a gradual, non-linear decrease over the first 40 years. Autofluorescence imaging revealed macular atrophy at a median age of 36.1 (IQR, 29.9-43.2) years. Patients experienced blindness at a median age of 42.5 (IQR, 32.9-45.2) years according to WHO visual impairment categories. OCT analysis showed a mean ellipsoid zone narrowing rate of 23.3 (IQR, -1.04-22.29) µm/month, with an accelerated reduction in the first 40 years (p<0.01). The median age at which ERG no longer detected a waveform was 26.5 (IQR, 20.5-32.8) years. Comparison by variant location indicated faster progression in patients with exon 1-14 variants during the initial two decades, while those with ORF15 variants showed accelerated progression from the third decade. CONCLUSIONS: We provide a foundation for determining the treatment window and an objective basis for evaluating the therapeutic efficacy of gene therapy for XLRP.

4.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39126069

RESUMEN

Gastrochilus is an orchid genus containing about 70 species in tropical and subtropical Asia with high morphological diversity. The phylogenetic relationships among this genus have not been fully resolved, and the plastome evolution has not been investigated either. In this study, five plastomes of Gastrochilus were newly reported, and sixteen plastomes of Gastrochilus were used to conduct comparative and phylogenetic analyses. Our results showed that the Gastrochilus plastomes ranged from 146,183 to 148,666 bp, with a GC content of 36.7-36.9%. There were 120 genes annotated, consisting of 74 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. No contraction and expansion of IR borders, gene rearrangements, or inversions were detected. Additionally, the repeat sequences and codon usage bias of Gastrochilus plastomes were highly conserved. Twenty hypervariable regions were selected as potential DNA barcodes. The phylogenetic relationships within Gastrochilus were well resolved based on the whole plastome, especially among main clades. Furthermore, both molecular and morphological data strongly supported Haraella retrocalla as a member of Gastrochilus (G. retrocallus).


Asunto(s)
Código de Barras del ADN Taxonómico , Evolución Molecular , Orchidaceae , Filogenia , Orchidaceae/genética , Orchidaceae/clasificación , Código de Barras del ADN Taxonómico/métodos , Genoma de Plastidios
5.
Comp Biochem Physiol B Biochem Mol Biol ; 275: 111021, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151662

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that are part of the nuclear hormone receptor family, playing a crucial role in gene expression regulation. They serve as a connection between lipid metabolism disorders and innate immunity by being activated by fatty acids and their derivatives, facilitating signal transduction between the cell surface and nucleus. However, the specific transcriptional effects of different fatty acids (FAs) in fish are not yet fully understood. In our research, we identified and characterized PPARs in grass carp (Ctenopharyngodon idellus). The complete coding sequences of pparαa, pparαb, pparγ, pparδa, and pparδb were 1443 bp, 1404 bp, 1569 bp, 1551 bp, and 1560 bp in length, respectively. Pparα showed the highest expression in the liver, pparγ was mainly expressed in abdominal adipose tissue, and pparδ exhibited increased expression in the heart compared to other tissues. Gene localization analysis revealed that only pparδa was present in both the nucleus and cytoplasm, while the other four genes were exclusively located in the nucleus. Furthermore, our study explored the influence of various fatty acids (docosahexaenoic acid, palmitic acid, lauric acid and oleic acid at concentrations of 0, 50, 100, and 200 µM) on the transcriptional activities of different PPARs, demonstrating the diverse effects of fatty acid ligands on PPAR transcriptional activity. These results have significant implications for understanding the regulation of PPARs transcriptional activity.

6.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125582

RESUMEN

Human retinal organoids (ROs) have emerged as valuable tools for studying retinal development, modeling human retinal diseases, and screening drugs. However, their application is limited primarily due to time-intensive generation, high costs, and low reproducibility. Quality assessment of RO differentiation is crucial for their application in research. However, traditional methods such as morphological evaluation and immunohistochemical analysis have limitations due to their lack of precision and invasiveness, respectively. This study aims to identify non-invasive biomarkers for RO differentiation quality using exosomal microRNAs (miRNAs), which are known to reflect cell-specific functions and development in the retina. We differentiated ROs from human induced pluripotent stem cells (hiPSCs) and classified them into 'superior' and 'inferior' groups based on morphological and immunohistochemical criteria. Exosomes from the conditioned media were isolated and analyzed for miRNA content. Our findings revealed distinct miRNA profiles between superior and inferior ROs, with superior ROs exhibiting higher miRNA diversity and specifically up- or down-regulated miRNAs. Gene ontology and pathway enrichment analyses indicated that the target genes of these miRNAs are involved in neuron proliferation and differentiation. The study suggests the potential of exosomal hsa-miR-654-3p and hsa-miR-451a as non-invasive biomarkers for real-time monitoring of RO quality, facilitating the development of standardized, efficient, and cost-effective culture methods.


Asunto(s)
Biomarcadores , Diferenciación Celular , Exosomas , Células Madre Pluripotentes Inducidas , MicroARNs , Organoides , Retina , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Organoides/metabolismo , Organoides/citología , Diferenciación Celular/genética , Retina/citología , Retina/metabolismo , Biomarcadores/metabolismo , Exosomas/metabolismo , Exosomas/genética , Células Cultivadas
7.
Nano Lett ; 24(32): 9889-9897, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38985008

RESUMEN

Recently, 2D semiconductor-based optoelectronic memory has been explored to overcome the limitations of conventional von Neumann architectures by integrating optical sensing and data storage into one device. Persistent photocurrent (PPC), essential for optoelectronic memory, originates from charge carrier trapping according to the Shockley-Read-Hall (SRH) model in 2D semiconductors. The quasi-Fermi level position influences the activation of charge-trapping sites. However, the correlation between quasi-Fermi level modulations and PPC in 2D semiconductors has not been extensively studied. In this study, we demonstrate optoelectronic memory based on a 2D semiconductor-polymer hybrid structure and confirm that the underlying mechanism is charge trapping, as the SRH model explains. Under light illumination, electrons transfer from polyvinylpyrrolidone to p-type tungsten diselenide, resulting in high-level injection and majority carrier-type transitions. The quasi-Fermi level shifts upward with increasing temperature, improving PPC and enabling optoelectronic memory at 433 K. Our findings offer valuable insights into optimizing 2D semiconductor-based optoelectronic memory.

8.
Plant Biotechnol J ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024414

RESUMEN

Polyamines (PAs) are pleiotropic bioorganic molecules. Cellular PA contents are determined by a balance between PA synthesis and degradation. PAs have been extensively demonstrated to play vital roles in the modulation of plant developmental processes and adaptation to various environmental stresses. In this review, the latest advances on the diverse roles of PAs in a range of developmental processes, such as morphogenesis, organogenesis, growth and development, and fruit ripening, are summarized and discussed. Besides, the crosstalk between PAs and phytohormones or other signalling molecules, including H2O2 and NO, involved in these processes is dwelled on. In addition, the attempts made to improve the yield and quality of grain and vegetable crops through altering the PA catabolism are enumerated. Finally, several other vital questions that remain unanswered are proposed and discussed. These include the mechanisms underlying the cooperative regulation of developmental processes by PAs and their interplaying partners like phytohormones, H2O2 and NO; PA transport for maintaining homeostasis; and utilization of PA anabolism/catabolism for generating high-yield and good-quality crops. This review aims to gain new insights into the pleiotropic role of PAs in the modulation of plant growth and development, which provides an alternative approach for manipulating and engineering valuable crop varieties that can be used in the future.

9.
Talanta ; 279: 126571, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39029178

RESUMEN

We develop color-encoded multicompartmental hydrogel (MH) microspheres tailored for multiplexed bioassays using a drop-based microfluidic approach. Our method involves the creation of triple emulsion drops that feature thin sacrificial oil layers separating two prepolymer phases. This configuration leads to the formation of poly(ethylene glycol) (PEG) multi-compartmental core-shell microspheres through photopolymerization, followed by the removal of the thin oil layers. The core compartments stably incorporate pigments, ensuring their retention within the hydrogel network without leakage, which facilitates reliable color encoding across varying spatial positions. Additionally, we introduce small molecule fluorescent labeling into the chemically functionalized shell compartments, achieving consistent distribution of functional components without the core's contamination. Importantly, our integrated one-pot conjugation of these color-encoded microspheres with affinity peptides enables the highly sensitive and selective detection of influenza virus antigens using a fluorescence bioassay, resulting in an especially low detection limit of 0.18 nM and 0.66 nM for influenza virus H1N1 and H5N1 antigens, respectively. This approach not only highlights the potential of our microspheres in clinical diagnostics but also paves the way for their application in a wide range of multiplexed assays.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124827, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39029205

RESUMEN

Two helical Schiff base compounds (H4TPA and H4TPE) containing a triphenylamine (TPA) or tetraphenylethylene (TPE) scaffold were successfully synthesized and characterized. Both H4TPA and H4TPE exhibited typical aggregation-induced emission characteristics in the mixed solvent of THF/H2O. The two compounds also showed high selectivity and sensitivity for the recognition of Cu2+ over other ions in THF/HEPES (1:4, V/V, pH = 7.4, 2.0 × 10-5 M), and could be used as turn-off fluorescent probes for Cu2+. The stoichiometric ratios and association constants were estimated via Job's plots and UV-vis spectra titration, and the detection limits of H4TPA and H4TPE toward Cu2+ were calculated to be 2.41 × 10-7 M and 1.38 × 10-7 M, respectively. Besides, the crystal structure of the complex obtained from the interaction of H4TPA with Cu2+ well illustrated the binding modes, which helped us understand the Cu2+ recognition mechanism of H4TPA and H4TPE. Moreover, the detection of Cu2+ and spiked recovery experiments were carried out, which indicated that the two probes can be applied to Cu2+ detection in real samples with satisfactory recoveries.

11.
Heliyon ; 10(13): e32936, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040333

RESUMEN

Interaction of the lanthanide nitrates M(NO3)3 (M = Gd, Eu) with methylcucurbit[5]uril (Me10Q[5]) in the presence of transition metal chlorides (ZnCl2 and FeCl3) in acidic media resulted in the isolation of the complexes [Me10Q[5]Gd(H2O)2Cl Gd(H2O)6](ZnCl4)2∙Cl∙8.9H2O (1) and [Me10Q[5]Eu(H2O)3Cl(H3O)](FeCl4)3 (2). The molecular structures of 1 and 2 have been determined by single crystal X-ray crystallography, and reveal discrete complexes which are involved in dense stacking with adjacent Me10Q[5]s linked via H-bonding and/or metal anions resulting in a supramolecular assembly.

12.
Chem Biodivers ; : e202401027, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073310

RESUMEN

Four new prenylated acetophenone derivatives, including one acetophenone dimer [acronyrone D (1)] and three acetophenone monomers [acronyrones E-G (2-4)], along with seven known analogues (5-11) were obtained from the leaves of Acronychia pedunculata. Their structures and absolute configurations were established by analysis of HRMS and NMR data, single crystal X-ray diffraction studies and quantum chemical calculations. In addition, the isolates were tested for their anti-proliferative acivity against HCT-116, RKO and SW480 cancer cell lines. Remarkably, compound 5 exhibited significant anti-proliferative effects on the three cell lines, with IC50 values ranging from 0.24 to 5.3 µM.

13.
World J Clin Cases ; 12(20): 4108-4120, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39015896

RESUMEN

BACKGROUND: The pedicle screw technique is widely employed for vertebral body fixation in the treatment of spinal disorders. However, traditional screw placement methods require the dissection of paraspinal muscles and the insertion of pedicle screws at specific transverse section angles (TSA). Larger TSA angles require more force to pull the muscle tissue, which can increase the risk of surgical trauma and ischemic injury to the lumbar muscles. AIM: To study the feasibility of zero-degree TSA vertical pedicle screw technique in the lumbosacral segment. METHODS: Finite element models of vertebral bodies and pedicle screw-rod systems were established for the L4-S1 spinal segments. A standard axial load of 500 N and a rotational torque of 10 N/m were applied. Simulated screw pull-out experiment was conducted to observe pedicle screw resistance to pull-out, maximum stress, load-displacement ratio, maximum stress in vertebral bodies, load-displacement ratio in vertebral bodies, and the stress distribution in pedicle screws and vertebral bodies. Differences between the 0-degree and 17-degree TSA were compared. RESULTS: At 0-degree TSA, the screw pull-out force decreased by 11.35% compared to that at 17-degree TSA (P < 0.05). At 0-degree and 17-degree TSA, the stress range in the screw-rod system was 335.1-657.5 MPa and 242.8-648.5 MPa, separately, which were below the fracture threshold for the screw-rod system (924 MPa). At 0-degree and 17-degree TSA, the stress range in the vertebral bodies was 68.45-78.91 MPa and 39.08-72.73 MPa, separately, which were below the typical bone yield stress range for vertebral bodies (110-125 MPa). At 0-degree TSA, the load-displacement ratio for the vertebral bodies and pedicle screws was slightly lower compared to that at 17-degree TSA, indicating slightly lower stability (P < 0.05). CONCLUSION: The safety and stability of 0-degree TSA are slightly lower, but the risks of screw-rod system fracture, vertebral body fracture, and rupture are within acceptable limits.

14.
Sci Rep ; 14(1): 15250, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956090

RESUMEN

This study is aimed to investigate the effect of hemodialysis (HD) on the lamina cribrosa (LC) of the optic nerve head (ONH) using swept-source optical coherence tomography (SS-OCT) and other ophthalmological parameters in patients with end-stage kidney disease (ESKD). This prospective observational study included 29 patients who underwent HD for ESKD. ONH parameters including neural canal diameter (NCD), peripapillary vertical height (PVH), and anterior LC depth (LCD), were assessed using SS-OCT. Changes in the ONH parameters before and after HD were statistically analysed. Correlations between changes in the LCD and other ocular and systemic measurements were identified using Pearson's correlation analyses. The mean anterior LCD significantly decreased from 441.6 ± 139.8 µm before HD to 413.5 ± 141.7 µm after HD (P = 0.001). Mean NCD and PVH did not show significant changes after HD (P = 0.841 and P = 0.574, respectively). A significant correlation was found between changes in the anterior LCD and the mean ocular perfusion pressure (r = 0.397, P = 0.036). We observed a significant decrease in anterior LCD after HD. Our study suggests that HD can influence the ONH, especially in the LC.


Asunto(s)
Disco Óptico , Diálisis Renal , Tomografía de Coherencia Óptica , Humanos , Masculino , Femenino , Persona de Mediana Edad , Diálisis Renal/efectos adversos , Tomografía de Coherencia Óptica/métodos , Disco Óptico/diagnóstico por imagen , Disco Óptico/patología , Estudios Prospectivos , Anciano , Fallo Renal Crónico/terapia , Adulto
15.
Food Sci Nutr ; 12(7): 5111-5120, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39055182

RESUMEN

Moderate non-covalent interaction of protein and polyphenols can improve the emulsifying property of protein itself. The corn protein hydrolysate (CPH) and tannic acid (TA) complex was successfully used to construct nanoemulsion for algal oil delivery. There has been no study on the feasibility of this nanoemulsion delivery system for other food functional components, for example, ß-carotene (ß-CE). CPH/TA complex-based nanoemulsion system for ß-CE delivery was studied, focusing on the effect of ß-CE content on the physicochemical stability of the nanoemulsions. The nanoemulsion delivery systems (dia. 150 nm) with low viscosity and good liquidity were easily fabricated by two-step emulsification. The nanoemulsions with high ß-CE content (>71.5 µg/mL) significantly increased (p < .05) the emulsion droplet size. However, there was no significant (p > .05) effect of ß-CE content on polydispersity index (PDI) and zeta potential of the nanoemulsions. The storage (30 days) experiment results demonstrated that the droplet size of the nanoemulsions with varying ß-CE content increased slightly during storage. However, the PDI values showed a slightly decreasing trend. Zeta potentials of the nanoemulsions showed no noticeable change during storage. Moreover, after storage of 30 days, the retention ratios of ß-CE were found to be up to 90%, which suggests an excellent protective effect for ß-CE by the nanoemulsion systems. The CPH/TA complex stabilized nanoemulsions could aggregate in gastric condition, but the ß-CE content did not have obvious effect on the digestive stability of the nanoemulsions. The CPH/TA complex could be employed as an emulsifier to construct a physicochemical stable nanoemulsion delivery system for lipophilic active components.

16.
J Org Chem ; 89(15): 10654-10659, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39018181

RESUMEN

With an inexpensive and commercially available WO3 semiconductor as the heterogeneous photocatalyst, a catalytic amount of NPh3 as the single-electron donor, and ambient air as the single-electron acceptor and oxygen source, the semiheterogeneous photocatalytic hydroxylation of alkyl and aryl boronic acids was developed. A broad range of hydroxylated compounds can be obtained in excellent yields.

17.
Angew Chem Int Ed Engl ; : e202405451, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031893

RESUMEN

Hydrogen-bonded organic frameworks (HOFs) are outstanding candidates for photocatalytic hydrogen evolution. However, most of reported HOFs suffer from poor stability and photocatalytic activity in the absence of Pt cocatalyst. Herein, a series of metal HOFs (Co2-HOF-X, X=COOMe, Br, tBu and OMe) have been rationally constructed based on dinuclear cobalt complexes, which exhibit exceptional stability in the presence of strong acid (12 M HCl) and strong base (5 M NaOH) for at least 10 days. More impressively, by varying the -X groups of the dinuclear cobalt complexes, the microenvironment of Co2-HOF-X can be modulated, giving rise to obviously different photocatalytic H2 production rates, following the -X group sequence of -COOMe>-Br>-tBu>-OMe. The optimized Co2-HOF-COOMe shows H2 generation rate up to 12.8 mmol g-1 h-1 in the absence of any additional noble-metal photosensitizers and cocatalysts, which is superior to most reported Pt-assisted photocatalytic systems. Experiments and theoretical calculations reveal that the -X groups grafted on Co2-HOF-X possess different electron-withdrawing ability, thus regulating the electronic structures of Co catalytic centres and proton activation barrier for H2 production, and leading to the distinctly different photocatalytic activity.

18.
Int J Colorectal Dis ; 39(1): 121, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085653

RESUMEN

BACKGROUND: The relationship between fecal incontinence (FI) and type 2 diabetes (T2D) has been well recognized, but a comprehensive understanding of this relationship is lacking, taking into account demographic factors and lifestyle variables. METHODS: Using a cross-sectional approach, 13,510 adults aged 20 years and older were identified from the 2005-2010 National Health and Nutrition Examination Survey. Multivariate logistic regression models were used to calculate the adjusted odds ratios (ORs), and further subgroup analyses and propensity score analysis were performed to ensure stable results. RESULTS: Among 13,510 adults, 11.2% had T2D, and 8.8% had FI. We found a strong T2D-FI link (OR: 1.30; 95% CI: 1.09-1.54, P < 0.001), even after adjusting for covariates. Age > 45 was a critical factor, with a stronger T2D-FI association. Sedentary behavior (OR: 1.41; 95% CI: 1.15-1.73) in T2D patients were associated with FI. CONCLUSIONS: Our study highlights the significant T2D-FI link in US adults, especially in older T2D patients. Lifestyle changes may reduce FI risk. More research is needed for causality and mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Incontinencia Fecal , Humanos , Incontinencia Fecal/etiología , Incontinencia Fecal/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Adulto , Estados Unidos/epidemiología , Anciano , Factores de Riesgo , Conducta Sedentaria , Oportunidad Relativa , Encuestas Nutricionales , Adulto Joven
19.
Plant J ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985498

RESUMEN

ERFs (ethylene-responsive factors) are known to play a key role in orchestrating cold stress signal transduction. However, the regulatory mechanisms and target genes of most ERFs are far from being well deciphered. In this study, we identified a cold-induced ERF, designated as PtrERF110, from trifoliate orange (Poncirus trifoliata L. Raf., also known as Citrus trifoliata L.), an elite cold-hardy plant. PtrERF110 is a nuclear protein with transcriptional activation activity. Overexpression of PtrERF110 remarkably enhanced cold tolerance in lemon (Citrus limon) and tobacco (Nicotiana tabacum), whereas VIGS (virus-induced gene silencing)-mediated knockdown of PtrERF110 drastically impaired the cold tolerance. RNA sequence analysis revealed that PtrERF110 overexpression resulted in global transcriptional reprogramming of a range of stress-responsive genes. Three of the genes, including PtrERD6L16 (early responsive dehydration 6-like transporters), PtrSPS4 (sucrose phosphate synthase 4), and PtrUGT80B1 (UDP-glucose: sterol glycosyltransferases 80B1), were confirmed as direct targets of PtrERF110. Consistently, PtrERF110-overexpressing plants exhibited higher levels of sugars and sterols compared to their wild type counterparts, whereas the VIGS plants had an opposite trend. Exogenous supply of sucrose restored the cold tolerance of PtrERF110-silencing plants. In addition, knockdown of PtrSPS4, PtrERD6L16, and PtrUGT80B1 substantially impaired the cold tolerance of P. trifoliata. Taken together, our findings indicate that PtrERF110 positively modulates cold tolerance by directly regulating sugar and sterol synthesis through transcriptionally activating PtrERD6L16, PtrSPS4, and PtrUGT80B1. The regulatory modules (ERF110-ERD6L16/SPS4/UGT80B1) unraveled in this study advance our understanding of the molecular mechanisms underlying sugar and sterol accumulation in plants subjected to cold stress.

20.
J Transl Med ; 22(1): 656, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004743

RESUMEN

NAD-dependent deacetylase Sirt2 is involved in mammalian metabolic activities, matching energy demand with energy production and expenditure, and is relevant to a variety of metabolic diseases. Here, we constructed Sirt2 knockout and adeno-associated virus overexpression mice and found that deletion of hepatic Sirt2 accelerated primary obesity and insulin resistance in mice with concomitant hepatic metabolic dysfunction. However, the key targets of Sirt2 are unknown. We identified the M2 isoform of pyruvate kinase (PKM2) as a key Sirt2 target involved in glycolysis in metabolic stress. Through yeast two-hybrid and mass spectrometry combined with multi-omics analysis, we identified candidate acetylation modification targets of Sirt2 on PKM2 lysine 135 (K135). The Sirt2-mediated deacetylation-ubiquitination switch of PKM2 regulated the development of glycolysis. Here, we found that Sirt2 deficiency led to impaired glucose tolerance and insulin resistance and induced primary obesity. Sirt2 severely disrupted liver function in mice under metabolic stress, exacerbated the metabolic burden on the liver, and affected glucose metabolism. Sirt2 underwent acetylation modification of lysine 135 of PKM2 through a histidine 187 enzyme active site-dependent effect and reduced ubiquitination of the K48 ubiquitin chain of PKM2. Our findings reveal that the hepatic glucose metabolism links nutrient state to whole-body energetics through the rhythmic regulation of Sirt2.


Asunto(s)
Hígado , Piruvato Quinasa , Sirtuina 2 , Estrés Fisiológico , Ubiquitinación , Animales , Humanos , Masculino , Ratones , Acetilación , Glucosa/metabolismo , Glucólisis , Resistencia a la Insulina , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Piruvato Quinasa/metabolismo , Sirtuina 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA