Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(22): 11626-11634, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780496

RESUMEN

Lithium-sulfur (Li-S) batteries with high specific energy density, low cost, and environmental friendliness of sulfur have been regarded as a competitive alternative to replace lithium-ion batteries. However, the shuttle effect and the sluggish conversion rate of lithium polysulfides (LiPSs) have seriously limited the practical application of Li-S batteries. Herein, high-entropy oxides grown on the carbon cloth (CC/HEO) are synthesized by a simple and ultrafast solution combustion method for the sulfur cathode. The as-prepared composites possess abundant HEO active sites for strong interaction with LiPSs, which can significantly promote redox kinetics. Besides, the carbon fiber substrate not only ensures high electrical conductivity but also accommodates large volume change, leading to a stable sulfur electrochemistry. Benefiting from the rational design, the Li-S batteries with CC/HEO as cathode skeleton exhibits good cyclability with a capacity decay rate of 0.057% per cycle after 1000 cycles at 2 C. More importantly, the Li-S batteries with 4.3 mg cm-2 high sulfur loading can still retain a high capacity retention of 78.2% after 100 cycles.

2.
Langmuir ; 40(10): 5527-5534, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408350

RESUMEN

Driven by the strong adsorptive and catalytic ability of metal sulfides for soluble polysulfides, it is considered as a potential mediator to resolve the problems of shuttle effect and slow reaction kinetics of polysulfides in lithium-sulfur (Li-S) batteries. However, their further development is limited by poor electrical conductivity and bad long-term durability. Herein, one type of new catalyst composed of SnS/SnS2 heterostructures on hierarchical porous carbon (denoted as SnS/SnS2-HPC) by a simple hydrothermal method is reported and used as an interlayer coating on the conventional separator for blocking polysulfides. The SnS/SnS2-HPC integrates the advantages of a porous conductive network for promoting the transport of electrons and an enhanced electrocatalyst for accelerating polysulfides conversion. As a result, such a cell coupled with a SnS/SnS2-HPC interlayer exhibits a long-term lifespan of 1200 cycles. This work provides a new cell configuration by using heterostructures with a built-in electric field formed from a p-n heterojunction to improve the performance of Li-S batteries.

3.
Small ; 20(11): e2309025, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37890449

RESUMEN

Transition metal-based sulfides exhibit remarkable potential as electrocatalysts for oxygen evolution reaction (OER) due to the unique intrinsic structure and physicochemical characteristics. Nevertheless, currently available sulfide catalysts based on transition metals face a bottleneck in large-scale commercial applications owing to their unsatisfactory stability. Here, the first fabrication of (FeCoNiMn2 )S2 dual-phase medium-entropy metal sulfide (dp-MEMS) is successfully achieved, which demonstrated the expected optimization of stability in the OER process. Benefiting from the "cell wall" -like structure and the synergistic effect in medium-entropy systems, (FeCoNiMn2 )S2 dp-MEMS delivers an exceptionally low overpotential of 169 and 232 mV at current densities of 10 and 100 mA cm-2 , respectively. The enhancement mechanism of catalytic activity and stability is further validated by density functional theory (DFT) calculations. Additionally, the rechargeable Zn-air batteries integrated with FeCoNiMn2 )S2 dp-MEMS exhibit remarkable performance outperforming the commercial catalyst (Pt/C+RuO2 ). This work demonstrates that the dual-phase medium-entropy metal sulfide-based catalysts have the potential to provide a greater application value for OER and related energy conversion systems.

4.
J Phys Chem Lett ; 14(5): 1156-1164, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36709444

RESUMEN

Amorphous metal-organic framework (MOF) materials have drawn extensive interest in the design of high-performance electrocatalysts for use in the electrochemical oxygen evolution reaction. However, there are limitations to the utilization of amorphous MOFs due to their low electrical conductivity and unsatisfactory stability. Herein, a novel amorphous-crystalline (AC) heterostructure is successfully constructed by synthesizing a crystalline metal sulfide (MS)-embedded amorphous Ni0.67Fe0.33-MOF, namely an MS/Ni0.67Fe0.33-MOF. It exhibits excellent catalytic performance (a low overpotential of 248 mV at 10 mA cm-2 with a small Tafel slope of 50 mV decade-1), durability, and stability (only 8% degradation of the current density at a constant voltage after 24 h). This work thus sheds light on the engineering of highly efficient catalysts with AC heterointerfaces for optimizing water-splitting systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA