Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 818: 151778, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34800455

RESUMEN

Molten carbonate pyrolysis with steam on fir sawdust was conducted to produce activated carbon, in which physical and recycling chemical activation was combined with carbonization as a single step process. The effects of temperature, molten carbonate pyrolysis and steam flow rate on the activated carbon were investigated. The BET results showed an excellent specific surface area of 822.02 m2/g and a pore diameter of 2.39 nm. The adsorption capacities of the activated carbon achieved ideal values on methylene blue and iodine and reached a removal capacity of 196.5 mg/g for the elimination of Cr(VI) in wastewater. There were four stages in developing the porous structure of activated carbon by the joint effects of molten carbonates and steam as the temperature rising. The activated carbon had abundant micropores inside the macropore structure at temperatures ranging from 700 °C to 750 °C. Molten carbonates promoted the formation of mesopores and macropores and reduced the reaction temperature as a catalyst and heat transfer medium, while steam promoted micropore generation by water-gas shift reactions. A recycling study indicated that the Cr(VI) adsorption capacity of the activated carbon generated after five recycling cycles of molten carbonates was still reached 195 mg/g.


Asunto(s)
Carbón Orgánico , Vapor , Adsorción , Carbonatos , Pirólisis
2.
ACS Omega ; 6(22): 14138-14147, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34124436

RESUMEN

Pickering emulsion systems provide potential platforms for simultaneously intensifying and catalyzing transesterification between triglyceride and methanol under static conditions. However, realizing static transesterification with high biodiesel yield is still challenging due to low emulsion stability at the reaction temperature. Here, a series of magnetically recyclable Pickering interfacial catalysts (PICs) with similar surface affinities but different densities were constructed as stabilizers of a soybean oil/methanol emulsion. The variations in the emulsion volume fraction and droplet size were comparatively studied and analyzed from the viewpoint of droplet settling and catalyst particle shedding. It is found that, except for surface affinity, PIC density also plays a pivotal role in emulsion stability owing to the non-negligible effect of gravity on catalyst adsorption in triglyceride/methanol emulsion (especially at elevated temperature). By reducing the density, finely improving the lipophilicity, and optimizing the addition amount of PIC, the obtained soybean oil/methanol emulsion can remain stable for at least 12 h at 60 °C, enabling static transesterification with a high biodiesel yield of 95.6%. Moreover, the best performing PIC can be reused for at least 7 cycles. This efficient static transesterification system offers a green strategy for biodiesel production.

3.
Bioresour Technol ; 324: 124614, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33434876

RESUMEN

A solid acid catalyst prepared by sulfonated Sargassum horneri carbon was utilized for the esterification reaction of oleic acid and methanol. The formed amorphous carbon layers during carbonization and the access of sulfonic acid groups during sulfonation can catalyze the esterification reaction for biodiesel preparation efficiently. The catalyst was characterized by various methods to investigate its physical and chemical properties. With carbonization at 300 °C for 2 h followed by sulfonation at 90 °C for 5 h, the catalyst reached acid density of 1.40 mmol/g. The catalyst dosage, methanol/oleic acid (molar ratio), reaction temperature, and reaction time were optimized to 10 wt%, 15:1, 70 °C, and 3 h, respectively. Under the optimal condition, the conversion of oleic acid reached 96.4%. Additionally, the catalyst was regenerated after four cycles, with the conversion of oleic acid still reaching 95.4%.


Asunto(s)
Biocombustibles , Sargassum , Carbono , Catálisis , Esterificación
4.
Water Sci Technol ; 81(6): 1114-1129, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32597399

RESUMEN

In this study, an efficient route to synthesizing polyethyleneimine-modified ultrasonic-assisted acid hydrochar (PEI-USAH) is developed and reported. Ultrasonic irradiation technique was used as surface modification method to shorten the crosslinking reaction for hydrochar and polyethyleneimine (PEI). The PEI-USAH showed an excellent adsorption capacity for Cr(VI) from aqueous solution. The physicochemical properties of this PEI-modified adsorbent were comparatively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis and CNHS analysis. The effects of contact time, initial pH, and biosorbent dose on adsorption capacities were investigated. The batch adsorption experiments showed that PEI-USAH possessed the maximum adsorption capacities of 94.38 mg/g and 330.84 mg/g for initial Cr(VI) concentration of 100 mg/L and 500 mg/L, respectively. Furthermore, this adsorption process could be fitted to Langmuir adsorption and described by the pseudo second order kinetic model. Based on the above findings, PEI-USAH could be used as a potential adsorbent for removal of Cr(VI) from wastewater.


Asunto(s)
Sargassum , Contaminantes Químicos del Agua , Adsorción , Cromo , Concentración de Iones de Hidrógeno , Cinética , Polietileneimina , Espectroscopía Infrarroja por Transformada de Fourier , Ultrasonido
5.
Chem Commun (Camb) ; 55(54): 7749-7751, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31204741

RESUMEN

A novel simple gas-driven exfoliation method with mild operating conditions is explored for producing graphene. The obtained graphene, with 97% of flakes being ≤2 layers and 62% mono-layers, is of high-quality and free of defects. A high sheer rate of up to 3.3 × 107 s-1 generated due to the driving of high-speed gas at a working pressure as low as 0.5 MPa is responsible for the exfoliation.

6.
RSC Adv ; 9(40): 23061-23070, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35514466

RESUMEN

The oxidative cleavage of vegetable oils and their derivatives to produce bio-based aldehydes is a potentially useful process, although the aldehyde products are readily oxidized to carboxylic acids and thus seldom obtained in high yields. The present study developed a room-temperature method for the synthesis of bio-aldehydes via the oxidative cleavage of vegetable oil-derived epoxides, using H2WO4 as the catalyst, H2O2 as the oxidant, and t-BuOH as the solvent. Reactions were carried out at temperatures ranging from 25 to 35 °C for 3.5-10.5 h, and provided >99% conversion and >90% aldehyde yield. In particular, an approximately 97% yield was obtained at 25 °C after 10.5 h. As the reaction proceeded, the H2WO4 dissolved to form a W-containing anion. Several mesoporous Al-MCM-41 materials having different Si/Al ratios were hydrothermally synthesized and used as adsorbents to recover the catalyst by adsorbing these anions. The adsorption capacity of the Al-MCM-41 was found to increase with decreases in the Si/Al ratio. The Al-MCM-41 had little effect on the oxidative cleavage reaction at 25 °C, and thus could be directly added to the reaction system. The excellent anion adsorption performance of the Al-MCM-41 greatly improved the reusability of the H2WO4 catalyst. When using the Al-MCM-41 with the best adsorption performance, there was no significant decrease in the activity of the catalyst following five reuses.

7.
RSC Adv ; 9(43): 24915-24921, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35528649

RESUMEN

With the severe energy and environmental issues, lignin has received increasing attention as a renewable biomass feedstock. The development of lignin-based nanoparticles provides a new route to the valorization of lignin. In this work, we propose a simple continuous method to prepare lignin nanoparticles (LNS) using a microchannel reactor. Polyvinylpyrrolidone (PVP)/sodium dodecyl sulfate (SDS) were selected as stabilizers. Spherical-like lignin nanoparticles with an average size of 13 nm were obtained in a T-shaped microchannel reactor. The effects of solvent species, PVP/SDS mass ratio, and lignin solution flow rate on the size of LNS were investigated. The as-prepared LNS had a good stability during 60 days-storage and were used as an additive to form UV-shielding composite films with poly(vinyl alcohol) (PVA). Compared with raw lignin, the addition of LNS could enhance the UV-shielding efficacy by 13.3% in the ultraviolet spectrum (250 nm). The present work suggests that the microchannel reactor is a promising continuous approach to prepare LNS with versatile applications.

8.
Nanoscale Res Lett ; 13(1): 416, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30591976

RESUMEN

Graphene, a two-dimensional nanomaterial, has shown tremendous promising applications in a broad range of fields. Mass production of defect-free graphene is a prerequisite for its applications. In this work, by using a needle valve, we propose a simple hydrodynamic-assisted exfoliation method to produce high-quality few-layer graphene flakes. The prepared graphene flakes, with an average layer of 5 (~ 71% less than five layers) and a Raman D/G intensity ratio as low as 0.1, are free of defects and oxidation. The average thickness and length of the few-layer graphene flakes are 2.3 nm (~ 90% < 4 nm) and 1.9 µm (~ 50% in the range of 1-7 µm), respectively. In a lab-scale trial, the concentration of graphene can reach 0.40 g/ml under mild operating conditions (working pressure 20 MPa, 16 cycles), and the corresponding production rate is 0.40 g/h. The hydrodynamic-assisted exfoliation by needle valve potentially offers a simple and efficient method for large-scale production of high-quality graphene.

9.
RSC Adv ; 8(24): 13353-13363, 2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35542554

RESUMEN

Membrane fouling is an urgent problem needing to be solved for practical application of nanofiltration membranes. In this study, an amphiphilic nanofiltration membrane with hydrophilic domains as well as low surface energy domains was developed, to integrate a fouling-resistant defense mechanism and a fouling-release defense mechanism. A simple and effective two-step surface modification of a polyamide NF membrane was applied. Firstly, triethanolamine (TEOA) with abundant hydrophilic functional groups was grafted to the membrane surface via reacting with the residual acyl chloride group of the nanofiltration membrane, making the nanofiltration membranes more hydrophilic; secondly, the 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS), well-known as a low surface energy material, was covalently grafted on the hydroxyl functional groups through hydrogen bonding. Filtration experiments with model foulants (bovine serum albumin (BSA) protein solution, humic acid solution (HA) and sodium alginate solution (SA)) were performed to estimate the antifouling properties of the newly developed nanofiltration membranes. As a result of surface modification proposed in this study the antifouling properties of an amphiphilic modified F-PA/PSF membrane were enhanced more than 10% compared to the PA/PSF specimen in terms of flux recovery ratio.

10.
Nanoscale Res Lett ; 11(1): 502, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27848236

RESUMEN

Nanofluids, colloidal suspensions consisting of base fluids and nanoparticles, are a new generation of engineering working fluids. Nanofluids have shown great potential in heat/mass transfer applications. However, their practical applications are limited by the high production cost and low stability. In this study, a low-cost agricultural waste, rice husk ash (RHA), was used as a silicon source to the synthesis of silica nanofluids. First, silica nanoparticles with an average size of 47 nm were synthesized. Next, by dispersing the silica nanoparticles in water with ultrasonic vibration, silica nanofluids were formed. The results indicated that the dispersibility and stability of nanofluids were highly dependent on sonication time and power, dispersant types and concentrations, as well as pH; an optimal experiment condition could result in the highest stability of silica nanofluid. After 7 days storage, the nanofluid showed no sedimentation, unchanged particle size, and zeta potential. The results of this study demonstrated that there is a great potential for the use of RHA as a low-cost renewable resource for the production of stable silica nanofluids. Graphical Abstract Rice husk ash was used as a low-cost renewable resource for production of silica nanofluids with high stability.

11.
Bioresour Technol ; 186: 334-337, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25818921

RESUMEN

Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C.


Asunto(s)
Calor , Microondas , Ácidos Ricinoleicos/química , Ácidos Undecilénicos/aislamiento & purificación
12.
Bioresour Technol ; 169: 800-803, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25106779

RESUMEN

In this work, the role of Brønsted acid for furfural production in biomass pyrolysis on supported sulfates catalysts was investigated. The introduction of Brønsted acid was shown to improve the degradation of polysaccharides to intermediates for furfural, which did not work well when only Lewis acids were used in the process. Experimental results showed that CuSO4/HZSM-5 catalyst exhibited the best performance for furfural (28% yield), which was much higher than individual HZSM-5 (5%) and CuSO4 (6%). The optimum reaction conditions called for the mass ratio of CuSO4/HZSM-5 to be 0.4 and the catalyst/biomass mass ratio to be 0.5. The recycled catalyst exhibited low productivity (9%). Analysis of the catalysts by Py-IR revealed that the CuSO4/HZSM-5 owned a stronger Brønsted acid intensity than HZSM-5 or the recycled CuSO4/HZSM-5. Therefore, the existence of Brønsted acid is necessary to achieve a more productive degradation of biomass for furfural.


Asunto(s)
Ácidos/farmacología , Biomasa , Biotecnología/métodos , Furaldehído/metabolismo , Calor , Ácidos Fosfóricos/farmacología , Ácidos Sulfúricos/farmacología , Catálisis/efectos de los fármacos , Sulfato de Cobre/farmacología , Zeolitas/farmacología
13.
Sheng Wu Gong Cheng Xue Bao ; 29(3): 358-69, 2013 Mar.
Artículo en Chino | MEDLINE | ID: mdl-23789277

RESUMEN

Effects of carbon sources (Na2CO3, NaHCO3 and glucose) and concentration of NaHCO3 on the growth density and lipid contents of Nannochloropsis oculata were studied. N. oculata preferred inorganic carbon to glucose, the growth density and lipid content of algae cultured with NaHCO3 were higher than that with glucose. The effects of concentration of NaHCO3 on growth density and lipid content were related to inoculation density and nitrogen level. In high nitrogen level, the concentration of NaHCO3 had little effect on the growth density, but in low nitrogen level, the growth density increased at first, and then decreased with the increase of concentration of NaHCO3. Based on the results we suggest that an optimum ratio of carbon to nitrogen was existed. Furthermore, we found the optimum ratio was changed with inoculation density. The optimum ratio of carbon to nitrogen was 3 when inoculation density was OD440 of 0.10, the optimum ratio increased to 5 with OD440 of 0.70. Concentration of NaHCO3 and ratio of carbon to nitrogen had significant effects on the lipid content and productivity. Lipid content reached the highest value when the ratio of carbon to nitrogen was 1 with experimental range of nitrogen level and inoculation density. The lipid productivity was 56.7 mg/(L.d) , and the EPA productivity was 6.5 mg/(L.d) at optimum cultivation condition with NaHCO3 as carbon source, the ratio of carbon to nitrogen at 1, the concentration of NaNO3 at 0.225 g/L, and the inoculation density with OD440 of 0.70.


Asunto(s)
Carbono/metabolismo , Ácidos Grasos/metabolismo , Fermentación , Microalgas/metabolismo , Estramenopilos/metabolismo , Carbono/química , Medios de Cultivo , Técnicas de Cultivo/métodos , Glucosa/metabolismo , Metabolismo de los Lípidos , Microalgas/crecimiento & desarrollo , Densidad de Población , Estramenopilos/crecimiento & desarrollo
14.
Environ Sci Technol ; 47(14): 7934-9, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23772855

RESUMEN

The technology of packed bed dielectric barrier discharge (DBD) plasma followed by a chemical absorption has been developed and was found to be an efficient way for decomposition treatment of sulfuryl fluoride (SO2F2) in simulated residual fumigant. The effects of energy density, initial SO2F2 concentration, and residence time on the removal efficiency of SO2F2 for the DBD plasma treatment alone were investigated. It was found that the SO2F2 could be removed completely when initial volume concentration, energy density, and residence time were 0.5%, 33.9 kJ/L, and 5.1 s, respectively. The removal mechanism of SO2F2 in the packed bed DBD reactor was discussed. Based on the detailed analysis of SO2F2 molecular stability and its exhaust products in the DBD plasma reactor, it was concluded that the energetic electrons generated in the packed bed DBD reactor played a key role on the removal of SO2F2, and the major decomposition products of SO2F2 detected were SO2, SiF4, and S (Sulfur). Among these products, SiF4 was formed by the F atom reacted with the filler-quartz glass beads (SiO2) in the packed bed DBD reactor. Aqueous NaOH solution was used as the chemical absorbent for the gaseous products of SO2F2 after plasma pretreatment. It was found that the gaseous products in the plasma exhaust could be absorbed and fixed by the subsequent aqueous NaOH solution.


Asunto(s)
Ácidos Sulfínicos/química , Absorción
15.
Sheng Wu Gong Cheng Xue Bao ; 29(12): 1865-9, 2013 Dec.
Artículo en Chino | MEDLINE | ID: mdl-24660635

RESUMEN

Nitrogen source is one of the important factors that affect the microalgae growth and lipid accumulation. We studied the effects of various nitrogen sources (i.e. NaNO3, CO(NH2)2, NH4Cl and CH3COONH4) and amount on the growth density, lipid yield, and eicosapentaenoic acid (EPA) content of Nannochloropsis oculata by single factor experimental method. The results show that N. oculata preferred NH4+ as nitrogen source rather than NO3- and CO(NH2)2. NH4+ could promote the growth and lipid accumulation of N. oculata. With the increase of nitrogen concentration, the biomass and the content of polyunsaturated fatty acid (PUFA) increased, but the content of lipid decreased. CH3COONH4 was the most suitable for growth, accumulation of lipid and EPA of N. oculata among the four investigated nitrogen sources. The optimal concentration was 5.29 mmol/L.


Asunto(s)
Ácido Eicosapentaenoico/metabolismo , Lípidos/biosíntesis , Microalgas/metabolismo , Nitrógeno/metabolismo , Estramenopilos/metabolismo , Lípidos/aislamiento & purificación , Microalgas/crecimiento & desarrollo , Nitrógeno/análisis , Estramenopilos/crecimiento & desarrollo
16.
Carbohydr Res ; 353: 111-4, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22516168

RESUMEN

Lignocellulose and other carbohydrates are being studied extensively as potential renewable carbon sources for liquid biofuels and other valuable chemicals. In the present study, a simple, sensitive, selective, and reliable HPLC method using a photodiode array (PDA) detector and an evaporative light scattering detector (ELSD) was developed for the simultaneous determination of important sugars (D(+)-cellobiose, glucose, xylose, and arabinose), furfural and 5-hydroxymethylfurfural (5-HMF) in lignocellulose hydrolysate. The analysis was carried out on an Aminex HPX-87H column (250 mm × 4.6 mm, 5 µm particle size). Ultra-pure water with 0.00035 M H(2)SO(4) was used as the mobile phase with a flow rate of 0.6 mL/min. The temperature of the ELSD drift tube was kept at 50 °C, the carrier gas pressure was 350 kPa, and the gain was set at 7. Furfural and 5-HMF were quantified on a PDA detector at 275 nm and 284 nm, respectively. The sugar concentrations were determined by ELSD. This method was validated for accuracy and precision. The regression equation revealed a good linear relationship (r(2) = 0.9986 ± 0.0012) within the test ranges. The method showed good reproducibility for the quantification of six analytes in corncob hydrolysate, with intra- and inter-day variations less than 1.12%. This method is also convenient because it allows the rapid analysis of the primary products of biomass hydrolysis and carbohydrate degradation.


Asunto(s)
Arabinosa/análisis , Cromatografía Líquida de Alta Presión/métodos , Furaldehído/análogos & derivados , Furaldehído/análisis , Glucosa/análisis , Xilosa/análisis , Zea mays/química
17.
Appl Biochem Biotechnol ; 168(1): 174-82, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21976150

RESUMEN

Mesoporous materials possess a hexagonal array of uniform mesopores, high surface areas, and moderate acidity. They are one of the important catalysts in the field of catalytic pyrolysis. In this paper, mesoporous materials of Al-MCM-41, La-Al-MCM-41, and Ce-Al-MCM-41 were synthesized, characterized, and tested as catalysts in the cellulose catalytic pyrolysis process using a fixed bed pyrolysis reactor. The results showed that mesoporous materials exhibited a strong influence on the pyrolytic behavior of cellulose. The presence of these mesoporous molecular sieve catalysts could vary the yield of products, which was that they could decrease the yield of liquid and char and increase the yield of gas product, and could promote high-carbon chain compounds to break into low-carbon chain compounds. Mesoporous molecular sieve catalysts were benefit to the reaction of dehydrogenation and deoxidation and the breakdown of carbon chain. Further, La-Al-MCM-41 and Ce-Al-MCM-41 catalysts can produce more toluene and 2-methoxy-phenol, as compared to the non-catalytic runs.


Asunto(s)
Biocombustibles/análisis , Biotecnología/métodos , Celulosa/metabolismo , Aceites de Plantas/metabolismo , Temperatura , Adsorción , Catálisis , Hidrólisis , Nitrógeno/química , Porosidad , Propiedades de Superficie , Difracción de Rayos X
18.
Sheng Wu Gong Cheng Xue Bao ; 27(3): 398-403, 2011 Mar.
Artículo en Chino | MEDLINE | ID: mdl-21650020

RESUMEN

Pyrolysis of cellulose with different catalysts has been conducted in a fixed-bed reactor. Micro-mesoporous composite molecular sieves of ZSM-5(38)/A1-MCM-41 with different Si/A1 ratios were prepared under hydrothermal conditions. With powder X-ray diffraction (XRD), the catalyst samples were characterized. GC-MS was used to analyze the bio-oil composition. The effects of catalysts on the pyrolysis product yields were investigated and the results were compared with the results of experiments performed without catalyst under the same pyrolitic conditions. The presence of the catalysts decreased the liquid yield, while increased the moisture content. The major improvement in the quality of bio-oil with the use of catalysts was the increase of DL-2,3-Butanediol. ZSM-5(38)/A1-MCM-41(20) favored the formation of phenol and 2-methoxy-phenol. In addition, these catalysts were all benefit for the generation of small molecular compounds. Also, it was found that ZSM-5(38) was better for the production of C4-C5 compounds. And micro-mesoporous composite molecular sieves mainly promoted the production of C6-C8 compounds.


Asunto(s)
Celulosa/metabolismo , Aceites de Plantas/metabolismo , Dióxido de Silicio/química , Zeolitas/química , Catálisis , Eliminación de Residuos
19.
Sheng Wu Gong Cheng Xue Bao ; 27(3): 475-81, 2011 Mar.
Artículo en Chino | MEDLINE | ID: mdl-21650030

RESUMEN

In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt.


Asunto(s)
Biocombustibles/análisis , Reactores Biológicos/microbiología , Lípidos/biosíntesis , Sales (Química)/química , Catálisis , Cloruros/química , Lantano/química , Oryza/metabolismo , Tallos de la Planta/metabolismo , Cloruro de Potasio/química , Compuestos de Zinc/química
20.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 4): o721, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-21202111

RESUMEN

The title compound, C(13)H(16)N(3)O(+)·PF(6) (-), which has an imide group in the imidazolium cation, is a new ionic liquid above its melting point. Two neighbouring mol-ecules are connected by a weak non-classical C-H⋯O hydrogen bond with the formation of centrosymmetric 14-membered dimers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...